Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (a2+b2+ab)2-a2b2-b2c2-c2a2
=a4+b4+a2b2+2(a2b2+ab3+a3b)-a2b2-b2c2-c2a2
=a4+b4+2a2b2+2ab3+2a3b-b2c2-c2a2
=(a2+b2)2+2ab(a2+b2)-c2(a2+b2)
=(a2+b2)[(a+b)2-c2]
=(a2+b2)(a+b+c)(a+b-c)
2. a4+b4+c4-2a2b2-2b2c2-2a2c2=(a2-b2-c2)2
3. a(b3-c3)+b(c3-a3)+c(a3-b3)
=ab3-ac3+bc3-ba3+ca3-cb3
=a3(c-b)+b3(a-c)+c3(b-a)
=a3(c-b)-b3(c-a)+c3(b-a)
=a3(c-b)-b3(c-b+b-a)+c3(b-a)
=a3(c-b)-b3(c-b)-b3(b-a)+c3(b-a)
=(c-b)(a-b)(a2+ab+b2)-(b-a)(b-c)(b2+bc+c2)
=(a-b)(c-b)(a2+ab+2b2+bc+c2)
4. a6-a4+2a3+2a2=a4(a+1)(a-1)+2a2(a+1)=(a+1)(a5-a4+2a2)=a2(a+1)(a3-a2+2)
5. (a+b)3-(a-b)3=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]
=2b(3a2+b2)
6. x3-3x2+3x-1-y3=(x-1)3-y3=(x-1-y)[(x-1)2+(x-1)y+y2]
=(x-y-1)(x2+y2+xy-2x-y+1)
7. xm+4+xm+3-x-1=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)
(Đúng nhớ like nhá !)
Minh Hải,Lê Thiên Anh,Nguyễn Huy Tú,Ace Legona,...giúp mk vs mai mk đi hk rùi
\(a,\left(-4xy-5\right)\left(5-4xy\right)=\left(4xy+5\right)\left(4xy-5\right).\)
\(=\left(4xy\right)^2-5^2=16x^2y^2-25\)
\(b,\left(a^2b+ab^2\right)\left(ab^2-a^2b\right)=\left(ab^2+a^2b\right)\left(ab^2-a^2b\right)\)
\(=\left(ab^2\right)^2-\left(a^2b\right)^2=a^2b^4-a^4b^2\)
\(c,\left(3x-4\right)^2+2\left(3x-4\right)\left(4-x\right)+\left(4-x\right)^2\)
\(=\left[\left(3x-4\right)+\left(4-x\right)\right]^2\)
\(=\left(3x-4+4-x\right)^2=\left(2x\right)^2=4x^2\)
\(d,\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)-\left(a^4+b^4\right)\)
\(=\left[\left(a^2+b^2\right)+ab\right]\left[\left(a^2+b^2\right)-ab\right]-\left(a^4+b^4\right)\)
\(=\left(a^2+b^2\right)^2-\left(ab\right)^2-a^4-b^4\)
\(=a^4+2a^2b^2+b^4-a^2b^2-a^4-b^4=a^2b^2\)
a) \(\dfrac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}=\dfrac{\left(a-b\right)\left(c-d\right)}{\left(a-b\right)\left(a+b\right)\left(c-d\right)\left(c+d\right)}=\dfrac{1}{\left(a+b\right)\left(c+d\right)}\)
b) \(\dfrac{m^4-m}{2m^2+2m+2}=\dfrac{m\left(m^3-1\right)}{2\left(m^2+m+1\right)}=\dfrac{m\left(m-1\right)\left(m^2+m+1\right)}{2\left(m^2+m+1\right)}=\dfrac{m\left(m-1\right)}{2}\)
c) \(\dfrac{ab^2+a^3-a^2b}{a^3+b^3}=\dfrac{a\left(b^2+a^2-ab\right)}{\left(a+b\right)\left(a^2-ab+b^2\right)}=\dfrac{a}{a+b}\)
đề bài là : dùng hằng đẳng thức để khai triển và thu gọn các biểu thức
câu a (a+b+c)2 +(a+b-c)2 - 4c2= (a+b+c)2+(a+b-c+2c).(a+b-c-2c) =(a+b+c)2 +(a+b+c).(a+b-3c)=(a+b+c). (a+b+c+a+b-3c)=(a+b+c).2.(a+b-c)
câu b 4a2b2-(a2+b2-c2) = (2ab-a2-b2+c2).(2ab+a2+b2-c2)
= (c2-(a-b)2).((a+b)2-c2)
= (c-a+b).(c+a-b).(a+b-c).(a+b+c)
câu c a4+b4+c4-2a2b2+2b2c2-2a2c2-4b2c2=(a2-b2-c2)2-4b2c2=(a2-b2-c2-2bc).(a2-b2-c2+2bc)=(a2-(b+c)2).(a2-(b-c)2)=(a-b-c).(a+b+c).(a-b+c).(a+b-c)
câu d dùng pp xét giá trị riêng thay b =c (bạn tự giải ) thì đa thức này nếu coi là đa thức biến b thì đa thức A chia hết cho b-c
a,b,c bình đẳng => A chia hết cho c-a , a-b
=>A= k(a-b)(b-c)(c-a)
thay thử một bộ a,b,c bất kì => k=? (mình đang vội )
thay k tính đc vàoA= k(a-b)(b-c)(c-a)
a) \(ab\left(a^4-b^4\right)=a^5b-ab^5=a^5b-ab-\left(ab^5-ab\right)\)
Xét: \(x^5-x=x\left(x^2-1\right)\left(x^2+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)\left(x^2-4\right)+5\left(x-1\right)\left(x+1\right).x\)
\(=x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)\)
= A + B
Vì \(A⋮2,3,5\) ; \(B⋮2,3,5\)
Mà 2,3,5 là đôi nguyên tố bằng nhau
\(\Rightarrow A⋮2.3.5\) và \(B⋮2.3.5\)
\(\Rightarrow A+B⋮30\)
hay \(x^5-x⋮30\) \(\forall x\in N\)
Do đó \(a^5-a⋮30\) và \(b^5-b⋮30\) với \(a,b\in N\)
\(\Rightarrow b\left(a^5-a\right)-a\left(b^5-b\right)⋮30\)
Hay \(ab\left(a^4-b^4\right)⋮30\)
b) Ta có \(B=a^2b^2\left(a^4-b^4\right)\)
\(=ab.ab.\left(a^4-b^4\right)\) (1)
Mặt khác: \(ab\left(a^4-b^4\right)⋮30\) (ở câu a) (2)
+Nếu a hoặc b chẵn:
Từ (1) và (2) suy ra \(B⋮60\)
+Nếu a,b cùng lẽ:
Thì:\(\left(a^2-b^2\right)\) và \(\left(a^2+b^2\right)\)cùng chẵn
Suy ra \(\left(a^2+b^2\right)\left(a^2-b^2\right)=a^4-b^4⋮4\) hay \(B⋮4\)
+ Từ (2) suy ra \(ab\left(a^4-b^4\right)⋮15\)
Mà (4;15)=1
Nên \(B⋮4.15\) hay \(B⋮60\)