K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

Ta có BĐt cầnd chứng minh \(\Leftrightarrow\frac{\left(a+b\right)^2}{a^2+4}\le\frac{3}{2}\Leftrightarrow2\left(a+b\right)^2\le3\left(a^2+4\right)\)

<=>\(2\left(a^2+b^2+2ab\right)\le3\left(a^2+4\right)\Leftrightarrow2\left(4+2ab\right)\le12+3a^2\)

<=>\(4ab\le3a^2+4=4a^2+b^2\)

<=>\(0\le4a^2+b^2-4ab\Leftrightarrow0\le\left(2a-b\right)^2\left(LĐ\right)\)

=> BĐt cần chứng minh luôn đúng 

^_^ 

24 tháng 5 2016

bạn chia a^2 cho ca tu và mẫu . từ giả thiết ta có : 3abc >= ab +bc+ ca . suy ra : 1/a + 1/b +1/c<=3 . sau khi chia ở A : ta có si ở mẫu . rồi áp dụng cô si ngc la ra . ban nao ko hieu thi nhan voi minh

30 tháng 10 2016

Ta có :(a+b-c)2 \(\ge\) 0

<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)

<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)

<=>bc+ac-ab \(\le\frac{5}{6}< 1\)

<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)

<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)

26 tháng 5 2020

Đặt \(a=\frac{x^2}{z},\text{ }b=\frac{y^2}{z}\) thì \(z=\sqrt{x^4+y^4}\) và x, y, z > 0

Ta cần chứng minh: \(z\left(\frac{1}{x^2}+\frac{1}{y^2}\right)-\left(\frac{x}{y}-\frac{y}{x}\right)^2\ge2\sqrt{2}\)

Tương đương: \(\sqrt{x^4+y^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge\left(\frac{x}{y}-\frac{y}{x}\right)^2+2\sqrt{2}\)

Sau cùng ta cần chứng minh: \(\frac{2\left(3-2\sqrt{2}\right)\left(x^2-y^2\right)^2}{x^2y^2}\ge0\)

Xong.

26 tháng 5 2020

Nhân tiện, với cùng điều kiện như trên thì bất đẳng thức sau đây đúng với mọi \(k\le1\):  

\(\frac{1}{a}+\frac{1}{b}\ge k\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+2\sqrt{2}\)

+) k = 1 đã được chứng minh.

+) k = 0 quá quen thuộc.

+) k < 0 thì yếu hơn k = 0.

14 tháng 7 2020

1/ .............. a=<b=<c=<d và a+d=b+c

7 tháng 2 2019

hê lô bạn :))

7 tháng 2 2019

hịu 

ko bt làm

hết

20 tháng 5 2016

Áp dụng bất đẳng thức : \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(Có thể chứng minh bằng biến đổi tương đương)

được: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)(1)

Thay \(a+b=2-c\)và \(a^2+b^2=2-c^2\)vào (1) được: 

\(2\left(2-c^2\right)\ge\left(2-c\right)^2\Leftrightarrow4-2c^2\ge4-4c+c^2\Leftrightarrow3c^2-4c\le0\)

Giải ra được \(0\le c\le\frac{4}{3}\) 

Tương tự với a,b  ta suy ra được điều phải chứng minh.