K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2020

\(P=16\left(a-\frac{1}{2}\right)^2+2\left(b-1\right)^2+\left(\frac{3}{a}+12a\right)+\left(\frac{2}{b}+2b\right)+2\left(2a+b\right)-6\ge14\)

"=" \(\Leftrightarrow\)\(a=\frac{1}{2};b=1\)

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

7 tháng 12 2017

bài 1

ÁP dụng AM-GM ta có:

\(\frac{a^3}{b\left(2c+a\right)}+\frac{2c+a}{9}+\frac{b}{3}\ge3\sqrt[3]{\frac{a^3.\left(2c+a\right).b}{b\left(2c+a\right).27}}=a.\)

tương tự ta có:\(\frac{b^3}{c\left(2a+b\right)}+\frac{2a+b}{9}+\frac{c}{3}\ge b,\frac{c^3}{a\left(2b+c\right)}+\frac{2b+c}{9}+\frac{a}{3}\ge c\)

công tất cả lại ta có:

\(P+\frac{2a+b}{9}+\frac{2b+c}{9}+\frac{2c+a}{9}+\frac{a+b+c}{3}\ge a+b+c\)

\(P+\frac{2\left(a+b+c\right)}{3}\ge a+b+c\)

Thay \(a+b+c=3\)vào ta được":

\(P+2\ge3\Leftrightarrow P\ge1\)

Vậy Min là \(1\)

dấu \(=\)xảy ra khi \(a=b=c=1\)

2 tháng 12 2016

Tìm GTNN a: $F= 14(a^2+b^2+c^2) + \dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}$ | HOCMAI Forum - Cộng đồng học sinh Việt Nam

3 tháng 12 2016

Ta có:

\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(\Leftrightarrow\left(a^2b+b^2c+c^2a\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2b+b^2c+c^2a\right)\le\frac{\left(a^2+b^2+c^2\right)^3}{3}\le\left(a^2+b^2+c^2\right)^4\)

\(\Rightarrow a^2b+b^2c+c^2a\le\left(a^2+b^2+c^2\right)^2\)

Ta lại có:

\(ab+bc+ca=\frac{1-\left(a^2+b^2+c^2\right)^2}{2}\)

Làm tiếp.

14 tháng 3 2016

A=-3..check mk nhá

13 tháng 3 2016

Có: 2a2 + 2b2 = 5ab => 2(a2 + b2) = 5ab => a2 + b2 = \(\frac{5}{2}\)ab 

\(A=\frac{2b}{a-b}+1=\frac{2b+a-b}{a-b}=\frac{a+b}{a-b}=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{a^2+b^2+2ab}{a^2+b^2-2ab}=\frac{\frac{5}{2}ab+2ab}{\frac{5}{2}ab-2ab}=\frac{\frac{9}{2}ab}{\frac{1}{2}ab}=9\)

Vậy A = 9

12 tháng 2 2018

\(\ge\)\(\frac{4}{a^2+b^2+2\left(a+b\right)}\) +\(\sqrt{\left(1+ab\right)^2}\) (bunhia và cosi)

  =\(\frac{4}{a^2+b^2+2ab}+1+ab=\frac{4}{\left(a+b\right)^2}+a+b+1\)

do \(a+b=ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge4\)

dạt a+b = t thì t>=4

cần tìm min \(\frac{4}{t^2}+t+1=\frac{4}{t^2}+\frac{t}{16}+\frac{t}{16}+\frac{7t}{8}+1\)

                                      \(\ge3.\sqrt[3]{\frac{4}{t^2}.\frac{t}{16}.\frac{t}{16}}+\frac{7.4}{8}+1=\frac{21}{4}\)

dau = xay ra khi a=b=2

22 tháng 2 2020

\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\ge\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)}+\frac{4}{ab\left(a+b\right)}\)

\(\ge\left(\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\right)+\frac{1}{ab}\)

\(\ge\frac{\left(1+1+1+1\right)^2}{\left(a+b\right)^2}+\frac{1}{ab}\ge\frac{16}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge16+4=20\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

26 tháng 10 2017

Cauchy-Schwarz cho 2 mẫu quy về M <= (a+b+2)/(a+b)^2 

Đến đây CM M <= 1 ,đặt t=a+b(t >= 2) ,..... 

26 tháng 10 2017

óc chó có thật