K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

A=-3..check mk nhá

13 tháng 3 2016

Có: 2a2 + 2b2 = 5ab => 2(a2 + b2) = 5ab => a2 + b2 = \(\frac{5}{2}\)ab 

\(A=\frac{2b}{a-b}+1=\frac{2b+a-b}{a-b}=\frac{a+b}{a-b}=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{a^2+b^2+2ab}{a^2+b^2-2ab}=\frac{\frac{5}{2}ab+2ab}{\frac{5}{2}ab-2ab}=\frac{\frac{9}{2}ab}{\frac{1}{2}ab}=9\)

Vậy A = 9

11 tháng 3 2016

bị nhầm xin lỗi

11 tháng 3 2016

\(\Rightarrow\left(a+b\right)^2=\frac{9ab}{2};\left(a-b\right)^2=\frac{ab}{2}\)

Suy ra: \(\frac{2b}{a-b}+1=\frac{a+b}{a-b}=\frac{\frac{9ab}{2}}{\frac{ab}{2}}=9\)

27 tháng 5 2016

Sử dụng giả thiết ax−by=√3ax−by=3 ta có:

(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3

Áp dụng bất đẳng thức CauchyCauchy , suy ra:

a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3

Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by

Ta có:

(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9

⇒2√x2+3+x≥3⇒2x2+3+x≥3

Vậy MinT=3MinT=3

27 tháng 5 2016

Sử dụng giả thiết ax−by=√3ax−by=3 ta có:

(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3

Áp dụng bất đẳng thức CauchyCauchy , suy ra:

a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3

Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by

Ta có:

(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9

⇒2√x2+3+x≥3⇒2x2+3+x≥3

Vậy MinT=3MinT=3

3 tháng 1 2017

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

2 tháng 1 2017

chẵng biết

15 tháng 6 2018

Ta có : 3a2 + 2b2 = 7ab ( a > b > 0 )

⇔ 3a2 - 6ab - ab + 2b2 = 0

⇔ 3a( a - 2b) - b( a - 2b) = 0

⇔ ( a - 2b)( 3a - b) = 0

⇔ a = 2b ( TM ĐK ) hoặc 3a = b ( KTM ĐK)

Khi đó : \(A=\dfrac{a^3-b^3}{\left(a+b\right)ab}=\dfrac{\left(2b-b\right)\left(4b^2+2b^2+b^2\right)}{3b.2b^2}=\dfrac{7b^3}{6b^3}=\dfrac{7}{6}\)

18 tháng 6 2018

mik cảm ơn bạn

15 tháng 8 2017

Vì \(a>b>0\Rightarrow A=\frac{a+b}{a-b}>0\)

\(2a^2+2b^2=5ab\Rightarrow a^2+b^2=\frac{5ab}{2}\)

Ta có : \(E^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{a^2+b^2+2ab}{a^2+b^2-2ab}=\frac{\frac{5ab}{2}+2ab}{\frac{5ab}{2}-2ab}=\frac{\frac{9}{2}ab}{\frac{1}{2}ab}=\frac{\frac{9}{2}}{\frac{1}{2}}=9\)

\(E^2=9\Rightarrow E=3\)(vì E>0)

Vậy \(E=3\)

15 tháng 8 2017

Có : \(2a^2+2b^2=5ab\Rightarrow\hept{\begin{cases}2a^2+2b^2-4ab=ab\\2a^2+2b^2+4ab=9ab\end{cases}}\Rightarrow\hept{\begin{cases}2\left(a-b\right)^2=ab\\2\left(a+b\right)^2=9ab\end{cases}}\Rightarrow\hept{\begin{cases}a-b=\sqrt{\frac{ab}{2}}\\a+b=\sqrt{\frac{9ab}{2}}\end{cases}}\)

\(\Rightarrow E=\frac{\sqrt{\frac{9ab}{2}}}{\sqrt{\frac{ab}{2}}}=\sqrt{\frac{\frac{9ab}{2}}{\frac{ab}{2}}}=\sqrt{\frac{9ab}{2}.\frac{2}{ab}}=\sqrt{9}=3\)