Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{a}{b}-1=\frac{c}{d}-1\Leftrightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
Áp dụng tính chất dãy ti số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
=> đpcm
Truy cập để nhận thẻ cào 50k free nè :
http://123link.vip/7K2YSHxh
Nhanh không cả hết !!
Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (1)
Thêm ab vào hai vế của (1):
\(ad+ab< bc+ab\)
\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (2)
Thêm cd vào hai vế của (2):
\(ad+cd< bc+cd\)
\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (3)
Từ (2) và (3) ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\left(\frac{a-b}{c-d}\right)^4=\left(\frac{bk-b}{dk-d}\right)^4=\left(\frac{b\left(k-1\right)}{d\left(k-1\right)}\right)^4=\left(\frac{b}{d}\right)^4\)(1)
\(\frac{a^4+b^4}{c^4+d^4}=\frac{\left(bk\right)^4+b^4}{\left(dk\right)^4+d^4}=\frac{b^4.k^4+b^4}{d^4.k^4+d^4}=\frac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\frac{b^4}{d^4}=\left(\frac{b}{d}\right)^4\)(2)
Từ (1);(2) => \(\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\left(\text{đpcm}\right)\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\left(\frac{a-b}{c-d}\right)^4\left(1\right)\)
\(\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\left(2\right)\)
Từ ( 1 ) và ( 2 ) => Đpcm
Ta có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow a.d=b.c\Rightarrow a.\left(b+d\right)=b.\left(a+c\right)\Rightarrow a.b+a.d=b.a+b.c\)( vì 2 tích bằng nhau thêm 2 tích cùng 1 số giống thì tích đó không thay đổi)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) (1)
\(\Rightarrow\) a = kb ; c = kd
\(\Rightarrow\frac{a+c}{b+d}=\frac{kb+kd}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (đpcm)