Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này mk làm rất nhiều rồi mà bạn có thể và những câu hỏi liên quan để xem nhé
suy ra 3.A=3^2+...+3^101
3A-A=(3^2+...+3^101)-(3+...+3^100)
2A=3^101-3
A=(3^101-3):2
2A+3=(3^101-3):2.2+3
=3^101-3+3
=3^101
3^x=3^101
Vậy x =101
a, A=3+3^2+3^3+.....+3^100(1)
Nhân 2 vế với 3,ta được:
3A=3^2+3^3+3^4+......+3^101(2)
Lấy(2)-(1),ta được:
2A=3^101-3
b,Thay 2A vào biểu thức , ta được:
3^101-3+3=3^n
3^101=3^n
n=101
Nhớ tích đúng cho mình nha bạn.
3A = 3 + 3^ 2 + 3^3 + ... + 3 ^ 100 + 3 ^ 101
A =1 + 3 + 3 ^ 2 + .. + 3 ^ 100
3A - A = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 100 + 3 ^ 101 - 1 - 3 - 3 ^ 2 - ... - 3^ 100
= 3 ^ 101 - 1
2A = 3 ^ 101 - 1
2A + 3 = 3 ^ 101 - 1 + 3 = 3 ^ 101 + 2 khác 3 ^ n
=> ko có n thỏa mãn
3A = 3 + 3^ 2 + 3^3 + ... + 3 ^ 100 + 3 ^ 101
A =1 + 3 + 3 ^ 2 + .. + 3 ^ 100
3A - A = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 100 + 3 ^ 101 - 1 - 3 - 3 ^ 2 - ... - 3^ 100
= 3 ^ 101 - 1
2A = 3 ^ 101 - 1
2A + 3 = 3 ^ 101 - 1 + 3 = 3 ^ 101 + 2 khác 3 ^ n
=> ko có n thỏa mãn
A = 3 + 32 + 33 + 34 + . . . + 3100
3A = 32 + 33 + 34 + . . . + 3101
=> 3A - A = 3101 - 3
2A = 3101 - 3
=> 2A + 3 = 3101
Mà : 2A + 3 = 3n
=> n = 101
Vậy : n = 101
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
2a)
ta co: A=3^0+3^1+3^2+...........+3^2009
=>2A=3^1+3^2+3^3+...........+3^2010
=>2A=3^2010-3^0=3^2012-1
=>2A<3^2010
a) A= 3+3 ^2+...+3 ^100
=> 3A = 3^ 2+3^ 3+...+3 ^101
=> 3A-A= 3 ^2+3 ^3+...+3 ^101 - ( 3+3 ^2+...+3 ^100 )
=> 2A = 3 ^101 -3
=> A= 3^101 -3/2
c) 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101
vậy n = 101
3A=3^2+....+3^2013
=>3A-A=(3^2+....+3^2013)-(3+....3^2012)
=>3A-1A=3^2+....+3^2013-3-....3^2012
=>2A=3^2013-3
=>2A+3=3^n
=>3^2013-3+3=3^n
=>n=2013