Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: x khác -3; 2
b)\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
c) A=3/4 <=> \(\frac{x-4}{x-2}=\frac{3}{4}\Leftrightarrow4x-16=3x-6\) tự giải pt này ra x nha
d) \(A=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)=> A thuộc Z <=> 2/x-2 thuộc Z( 1 thuộc Z rồi) => x-2 thuộc Ư(2) <=> x-2 thuộc (+-1;+-2)
x-2 | 1 | -1 | 2 | -2 |
x | 3(t/m) | 1(t/m) | 4(t/m) | 0(t/m) |
=> Vậy..
e) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=+-3\)thay lần lượt vào A rồi tính nha
a, \(A=\frac{x^2+3x-x+3-x^2+1}{x^2-9}\)\(.\frac{x+3}{2}\) \(\left(x\ne3;-3\right)\)
\(A=\frac{2x+4}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{2}\)\(=\frac{2\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{2}\)\(=\frac{x+2}{x-3}\)
b, để \(A\in Z\Rightarrow\hept{\begin{cases}x+2⋮x-3\\x-3⋮x-3\end{cases}}\)\(\Rightarrow x+2-x+3=5⋮x-3\)\(\leftrightarrow x+3\in\left(1;5;-1;-5\right)\)
\(\leftrightarrow x\in\left(-2;2;-4;-8\right)\)
\(P=\left(\frac{9}{x^2-3x}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3-3x}\)
a,\(ĐKXĐ:x\ne0;x\ne3;x\ne1\)
\(P=\left(\frac{9}{x^2-3x}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3-3x}=\left(\frac{9}{x\left(x-3\right)}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3\left(1-x\right)}\)
\(=\left(\frac{9+\left(x-2\right)\left(x-3\right)-x.x}{x\left(x-3\right)}\right).\frac{x}{3\left(1-x\right)}=\frac{9+x^2-5x+6-x^2}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}\)
\(=\frac{-5x+15}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}=\frac{-5\left(x-3\right)}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}=-\frac{5}{3\left(1-x\right)}\)
b, \(x=\frac{1}{2}\)
\(\Rightarrow P=-\frac{5}{3\left(1-\frac{1}{2}\right)}=-\frac{5}{3.\frac{1}{2}}=-5:\frac{3}{2}=-\frac{10}{3}\)
c, Để \(P\in z\)thì \(3\left(1-x\right)\inƯ\left(5\right)=\left(-5;-1;1;5\right)\)
\(3\left(1-x\right)=-5\Rightarrow1-x=-\frac{5}{3}\Rightarrow x=\frac{8}{3}\)
\(3\left(1-x\right)=-1\Rightarrow1-x=-\frac{1}{3}\Rightarrow x=\frac{4}{3}\)
\(3\left(1-x\right)=1\Rightarrow1-x=\frac{1}{3}\Rightarrow x=\frac{2}{3}\)
\(3\left(1-x\right)=5\Rightarrow1-x=\frac{5}{3}\Rightarrow x=-\frac{2}{3}\)
Answer:
a, \(\left|x-3\right|=1\)
\(\Rightarrow\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
Trường hợp 1: Ta thay \(x=4\) vào \(A\)
\(A=\frac{2.4-7}{4-1}=\frac{1}{3}\)
Trường hợp 2: Ta thay \(x=2\) vào \(A\)
\(A=\frac{2.2-7}{2-1}=\frac{-3}{1}=-3\)
b, Để cho \(A\inℤ\)
\(\Rightarrow\frac{2x-7}{x-2}\inℤ\)
\(\Rightarrow2-\frac{5}{x-1}\inℤ\)
\(\Rightarrow5⋮x-1\)
\(\Rightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{2;0;6;-4\right\}\)
c, Để \(A=\frac{2}{3}\)
\(\Rightarrow\frac{2x-7}{x-1}=\frac{2}{3}\)
\(\Rightarrow2-\frac{5}{x-1}=\frac{2}{3}\)
\(\Rightarrow\frac{5}{x-1}=\frac{4}{3}\)
\(\Rightarrow x-1=\frac{15}{4}\)
\(\Rightarrow x=\frac{19}{4}\)