K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2015

a. Ta có: 

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^9.\left(1+2\right)\)

\(=2.3+2^3.3+...+2^9.3\)

\(=3.\left(2+2^3+...+2^9\right)\)chia hết cho 3

=> A chia hết cho 3 (đpcm).

b. Ta có:

\(A=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.\left(1+2+4+8+16\right)+2^6.\left(1+2+4+8+16\right)\)

\(=2.31+2^6.31\)

\(=31.\left(2+2^6\right)\)chia hết cho 31

=> A chia hết cho 31 (đpcm).

16 tháng 12 2015

A=(2+2^2)+(2^3+2^4)+...+(2^9+2^10)

A=(2x1+2x2)+(2^3x1+2^3x2)+...+(2^9x1+2^9x2)

A=2x(1+2)+2^3x(1+2)+....+2^9x(1+2)

A=2x3+2^3x3+...+2^9x3

A=3x(2+2^3+....+2^9)

Vì 3 chia hết cho 3=>3x(2+2^3+...+2^9) chia hết cho 3

hay A chia hết cho 3

16 tháng 12 2015

A=2+22+23+...+210

A=(2+22)+...+(29+210)

A=2(1+2)+...+29(1+2)

A=2.3+...+29.3

A=(2+23+...+29).3

Vì (2+23+...+29).3 chia hết cho 3 nên A chia hết cho 3

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

20 tháng 7 2015

a 2A = 2^2 + 2^3 + 2^4 + .. + 2^11 

 2A -A = 2^2 + 2^3   +... + 2^10 + 2^11 -2- 2^2 - 2^3 - ... - 2^10

      A  = 2^11 - 2  = 2048 - 2 = 2046 = 382 .3 chia hết cho  3 

b, A = 2046 = 31 .66 cha hết cho 31 

      

17 tháng 9 2017

 Nguyễn Việt Hoàng  CTV 5 phút trước 

a) Làm theo thang Tran

b) A = 2046 = 31 . 66 . Mà 2046 : 31 = 66 => Số đó chia hết cho 31

Đ/s:

22 tháng 1 2019

Em phải học hằng đảng thức lớp 8

Anh giải cho :

ta có: 

<=> \(a^2-2ab+b+ab⋮9\)

<=> \(\left(a-b\right)^2+ab⋮9\)

=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)

Xét \(\left(a-b\right)^2⋮9\)

<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)

<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)

Xét \(ab⋮9\)

<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)

Từ (1) và (2) => \(a⋮3\)

                           \(b⋮3\)

26 tháng 11 2021

Answer:

Ta có:

\(a^2-ab+b^2⋮9⋮3\)

\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2⋮3\)

\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)

\(\Rightarrow\left(a+b\right)^2⋮9\)

Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)

\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)

Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3

Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)

4 tháng 7 2015

1)  a/ A = (2+22)+(23+24) +...+ (29+210)

A = 2(1+2) + 23(1+2)+....+29(2+1)

A= 3(2+23 + 25 + 27 + 29)

Vậy A chia hết cho 3 (khi chia 3 được 2+23 + 25 + 27 + 2dư 0)

b) A = (2+22 + 23 + 24 + 2) + ( 26 + 27 + 28 + 29 + 210)

A= 2(1+2+22 + 23 + 24) + 26 (1+2+22 + 23+24)

A = 31(2+26) luôn chia hết cho 31

2) \(3^{n+2}+3^n=3^n.3^2+3^n=3^n\left(9+1\right)=10.3^n\) luôn chia hết cho 10

26 tháng 10 2017
bài này khó thật. Thầy bắt mình giải thi HSG lớp 6, thật đau lòng
7 tháng 10 2014

A=2+22+23+24+25+26+27+28+29+210

=2.(1+2)+23.(1+2)+25.(1+2)+27.(1+2)+29.(1+2)

=3.(2+23+25+27+29) chia hết cho 3

A=2+22+23+24+25+26+27+28+29+210

  =2.(1+2+4+8+16)+26.(1+2+4+8+16)

  =31.(2+26) chia hết cho 31

7 tháng 7 2015

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(A=3\left(2+2^3+2^5+...+2^{59}\right)=7\left(2+2^4+2^7+...+2^{55}+2^{58}\right)\)

=> A chia hết cho 3 và A cũng chia hết cho 7

21 tháng 12 2014

câu a A= 3+3^2 + 3^3 + ...+3^60 chia hết cho 3

mày viết như thế này Nhung béo ạ

A=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^58=3^59+3^60)

A=3(1+3=3^2)+3^4(1+3+3^2)+...+3^58(1+3+3^2)

A=13(3+3^4+3^5+...+3^58)chia hết cho 13

câu sau chịu! MAi nhớ đãi kẹo