Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2+2^2)+(2^3+2^4)+...+(2^9+2^10)
A=(2x1+2x2)+(2^3x1+2^3x2)+...+(2^9x1+2^9x2)
A=2x(1+2)+2^3x(1+2)+....+2^9x(1+2)
A=2x3+2^3x3+...+2^9x3
A=3x(2+2^3+....+2^9)
Vì 3 chia hết cho 3=>3x(2+2^3+...+2^9) chia hết cho 3
hay A chia hết cho 3
A=2+22+23+...+210
A=(2+22)+...+(29+210)
A=2(1+2)+...+29(1+2)
A=2.3+...+29.3
A=(2+23+...+29).3
Vì (2+23+...+29).3 chia hết cho 3 nên A chia hết cho 3
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
a 2A = 2^2 + 2^3 + 2^4 + .. + 2^11
2A -A = 2^2 + 2^3 +... + 2^10 + 2^11 -2- 2^2 - 2^3 - ... - 2^10
A = 2^11 - 2 = 2048 - 2 = 2046 = 382 .3 chia hết cho 3
b, A = 2046 = 31 .66 cha hết cho 31
Em phải học hằng đảng thức lớp 8
Anh giải cho :
ta có:
<=> \(a^2-2ab+b+ab⋮9\)
<=> \(\left(a-b\right)^2+ab⋮9\)
=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)
Xét \(\left(a-b\right)^2⋮9\)
<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)
<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)
Xét \(ab⋮9\)
<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)
Từ (1) và (2) => \(a⋮3\)
\(b⋮3\)
Answer:
Ta có:
\(a^2-ab+b^2⋮9⋮3\)
\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)
\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)
\(\Rightarrow\left(a+b\right)^2⋮3\)
\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)
\(\Rightarrow\left(a+b\right)^2⋮9\)
Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)
\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)
Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3
Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)
1) a/ A = (2+22)+(23+24) +...+ (29+210)
A = 2(1+2) + 23(1+2)+....+29(2+1)
A= 3(2+23 + 25 + 27 + 29)
Vậy A chia hết cho 3 (khi chia 3 được 2+23 + 25 + 27 + 29 dư 0)
b) A = (2+22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210)
A= 2(1+2+22 + 23 + 24) + 26 (1+2+22 + 23+24)
A = 31(2+26) luôn chia hết cho 31
2) \(3^{n+2}+3^n=3^n.3^2+3^n=3^n\left(9+1\right)=10.3^n\) luôn chia hết cho 10
A=2+22+23+24+25+26+27+28+29+210
=2.(1+2)+23.(1+2)+25.(1+2)+27.(1+2)+29.(1+2)
=3.(2+23+25+27+29) chia hết cho 3
A=2+22+23+24+25+26+27+28+29+210
=2.(1+2+4+8+16)+26.(1+2+4+8+16)
=31.(2+26) chia hết cho 31
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(A=3\left(2+2^3+2^5+...+2^{59}\right)=7\left(2+2^4+2^7+...+2^{55}+2^{58}\right)\)
=> A chia hết cho 3 và A cũng chia hết cho 7
câu a A= 3+3^2 + 3^3 + ...+3^60 chia hết cho 3
mày viết như thế này Nhung béo ạ
A=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^58=3^59+3^60)
A=3(1+3=3^2)+3^4(1+3+3^2)+...+3^58(1+3+3^2)
A=13(3+3^4+3^5+...+3^58)chia hết cho 13
câu sau chịu! MAi nhớ đãi kẹo
a. Ta có:
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^9.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^9.3\)
\(=3.\left(2+2^3+...+2^9\right)\)chia hết cho 3
=> A chia hết cho 3 (đpcm).
b. Ta có:
\(A=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.\left(1+2+4+8+16\right)+2^6.\left(1+2+4+8+16\right)\)
\(=2.31+2^6.31\)
\(=31.\left(2+2^6\right)\)chia hết cho 31
=> A chia hết cho 31 (đpcm).