Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)
\(A=1+2+2^2+2^3+...+2^{2010}\)
\(2A=2+2^2+2^3+...+2^{2011}\)
\(2A-A=\left[2+2^2+2^3+...+2^{2011}\right]-\left[1+2+2^2+2^3+...+2^{2010}\right]\)
\(A=2^{2011}-1\)
Mà \(B=2^{2011}-1\)
=> A = B
Ta có: A=\(2^0+2^1+2^2+2^3+...+2^{2010}\)
2A=\(2^1+2^2+2^3+2^4+...+2^{2011}\)
2A-A hay A=\(2^{2011}-2^0\)
=\(2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\)
\(\Rightarrow\)A=B
Hok tốt nha!!!
A=(1+2010)+2010 mũ 2+2010 mũ 3 +...+2010 mũ 6 + 2010 mũ 7
A=2011+2010 mũ 2(1+2010)+...+2010 mũ 6(1+2010)
A=2011+2010 mũ 2.2011+...2010 mũ 6.2011
A=2011(1+2010+...+2010 mũ 6)chia hết cho 2011
Đầu tiên chúng ta sẽ so sánh như sau
5^2010 và 5^2009
vì 2010>2009 nên 5^2010>5^200 (1)
1/5^2011+1 và 1/5^2010+1
vì 2011+1=2012
2010+1=2011
mà 2012>2011 nên 1/5^2011+1>1/5^2010+1 (2)
Từ 1 và 2 ta có thể suy ra A>B
Vậy A>B
ta có 2010 >2009 suy ra 5^2010 >5^2009 suy ra 5^2010 + 1>5^2009 +1 (1)
2011>2010 suy ra 5^2011 >5^2010 suy ra 1/5^2011<1/5^2010 suy ra 1/5^2011 +1 <1/5^2010 + 1 (2)
từ (1) và (2) => A=B
S = 2010 + 2010^2 + ........ + 2010^2010
= ( 2010 + 2010^2) + ....... + ( 2010^2009 + 2010^2010 )
= 2010. ( 1 + 2010 ) + .........+ 2010^2009. ( 1 + 2010 )
= 2010.2011 + ....... + 2010^2009.2011 chia hết cho 2011
=> S chia hết cho 2011
Ta có :
\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)
\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)
Vì \(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)
~ Học tốt ~