Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a. https://olm.vn/hoi-dap/detail/100987610050.html
b. Giống nhau hoàn toàn => P=Q
Chỉ biết thế thôi
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(<1-\frac{1}{2010}\)
\(<\frac{2009}{2010}<1\)
=>N<1
a.N=1-5-9+13+17-21+...+2001-2005-2009+2013+2017
N = ( 1 - 5 - 9 + 13 ) + ( 17 - 21 - 25 + 29 ) + .... + ( 2001 - 2005 - 2009 + 2013 ) + 2017
N = 0 + 0 + ... + 0 + 2017
N = 2017
Ta có:\(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2013}{2011+2012+2013}\)
MÀ:\(\frac{2010}{2011+2012+2013}< \frac{2010}{2011}\)
\(\frac{2011}{2011+2012+2013}< \frac{2011}{2012}\)
\(\frac{2012}{2011+2012+2013}< \frac{2012}{2013}\)
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)
2010/2011+2012+2013>2010+2011+2012/2011+2012+2013
2011/2011+2012+2013>2010+2011+2012/2011+2012+2013
2012/2011+2012+2013>2010+2011+2012/2011+2012+2013
suy ra:2010/2011+2011/2012+2012/2013>2010+2011+2012/2011+2012+2013
\(Q=\frac{2010+2011+2012}{2011+2012+2013}\)
\(Q=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Ta có :
\(\hept{\begin{cases}\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\\\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\\\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\end{cases}}\)
\(\Rightarrow P>Q\)
bạn tham khảo:
2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013
2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013
\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
\(P>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
\(P>\frac{2010+2011+2012}{2011+2012+2013}\)
\(P>Q\)
Câu 1 bị sai đề bài.
Câu 2:
\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}\)
\(=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{1}{2011}+\frac{1}{2011}\)
Vì:
\(\frac{1}{2011}>\frac{1}{2012};\frac{1}{2011}>\frac{1}{2013}\Rightarrow\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}>0\)
\(\Rightarrow\)\(\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}>3\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}>3\)