K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2019

ta thấy: \(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2\ge2a-1\)

Tương tự, ta có: \(\hept{\begin{cases}a^2\ge2a-1\\b^2\ge2b-1\\c^2\ge2c-1\end{cases}}\Rightarrow a^2+b^2+c^2\ge2.\left(a+b+c\right)-3\)

\(\Rightarrow3+3\ge2.\left(a+b+c\right)\Leftrightarrow a+b+c\le3\)

6 tháng 4 2017

sai đề kìa

6 tháng 4 2017

bộ sai chỗ nào

15 tháng 1 2018

Tìm Min thì còn tìm dc chứ Tìm max khó lắm ::::V

2 tháng 3 2018

ko hiểu pain nói j quên đây lp 8

Đặt A=\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(A+3=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1\)

\(A+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}\)

\(A+3=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)

CM:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)

Áp dụng:\(\Rightarrow A+3\ge\left(a+b+c\right)\left(\dfrac{9}{a+b+b+c+c+a}\right)=\dfrac{9}{2}\)

\(\Rightarrow A\ge\dfrac{3}{2}\left(đpcm\right)\)

31 tháng 5 2018

Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)

\(\Rightarrow\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)

8 tháng 12 2017

^_^ hihi

20 tháng 7 2020

Áp dụng BĐT svacsơ: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)

Ta có: \(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1}{3}\)

20 tháng 7 2020

Áp dụng BĐT Svac - xơ ta có : 

\(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1}{3}\)(đpcm)