K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

đặt B=1/1.2+1/2.3+...+1/2011.2012

ta có:A=1/22+1/32+1/42+.........+1/20112+1/20122<B=1/1.2+1/2.3+...+1/2011.2012

ta có:B=1/1.2+1/2.3+...+1/2011.2012

=1-1/2+1/2-1/3+...+1/2011-1/2012

=1-1/2012<1

=>A<B<1

=>A<1=>A ko fai số tự nhiên (vì số tự nhiên >1)

12 tháng 2 2016

câu 2 là ...+ 398  - 399  nhé mk vội nên vít sai na !

8 tháng 5 2016

a/M=2/3.5+2/5.7+2/7.9+.....+2/97.99

M=1/3-1/5+1/5-1/7+..+1/97-1/99

M=1/3-1/99

M=32/99

8 tháng 5 2016

b)ta có 1/2.3+1/3.4+1/4.5+..+1/2015.2016+1/2016.2017<A

=>1/2-1/3+1/3-1/4+1/4-1/5+..+1/2015-1/2016+1/2016-1/2017<a

1/2-1/2017<A

2/15/4034<A (1)

Ta có

1/1.2+1/2.3+1/3.4+1/4.5+..+1/2015.2016>A

=>1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+..+1/2015-1/2016>A

1-1/2016

2015/2016>A (2)

Từ (1) và (2)=>A không phải là số tự nhiên(đpcm) 

14 tháng 4 2017

mệt quá bà hề

12 tháng 5 2016

\(M=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+.....+\frac{2}{97}-\frac{2}{99}\)

\(M=\frac{2}{3}-\frac{2}{99}=\frac{64}{99}\)

\(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}>0\)

\(\frac{1}{1^1}+\frac{1}{2^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}<1\)

vậy \(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}\)không phải số tự nhiên