Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: a=3b=4c=5d =>\(\frac{a}{60}=\frac{b}{20}=\frac{c}{15}=\frac{d}{12}\)
\(\Rightarrow\frac{ab}{1200}=\frac{c^2}{225}=\frac{d^2}{144}=\frac{ab-c^2-d^2}{1200-225-144}=\frac{831}{831}=1\)
\(\Rightarrow c^2=225\Rightarrow\orbr{\begin{cases}c=15\\c=-15\end{cases}}\)
-Nếu c=15 thay vào hệ ban đầu ta có:
\(\frac{b}{20}=\frac{c}{15}=\frac{15}{15}=1\Rightarrow b=20\Rightarrow b-c=5\)
-Nếu c=-15 => b= -20 => b-c= -5
Từ a= 3b =4c = 5d =>c =3/4b (1) ; d=3/5b
Thay a= 3b ; c =3/4b ; d= 3/5b vào ab-c^2-d^2=831
=>3b^2 - 9/16b^2 - 9/25b^2 = 831
=>831/400b^2 = 831
=>b^2=400
=>b=20 hoặc b=-20
Thay 2 giá trị của b vào (1)
=>c=15 hoặc c=-15
=>b-c=5 hoặc -5
Từ \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)
\(d^2=ac\Rightarrow\frac{c}{d}=\frac{d}{a}\left(3\right)\)
Từ (1) (2) (3) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
Khi đó M = \(\frac{a}{b+c+d}+\frac{b}{a+c+d}=\frac{a}{3a}+\frac{a}{3a}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)
Vậy \(M=\frac{2}{3}\)
Theo bài ra ta có : \(\frac{a}{4}=\frac{b}{6}=\frac{c}{7}\)và a2+b2_ c2= 12
Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a}{4}=\frac{b}{6}=\frac{c}{7}=\frac{a^2+b^2-c^2}{4^2+6^2-7^2}=\frac{12}{16+36-49}=4\)
=> a=...;b=...;c=...
Mình đang vội nên làm đến đây thôi, bạn làm tiếp nhé, nếu đúng tick cho mình nhé
Bài 1 : Giải
Lưu ý : b2 = a.c ; c2 = b.d
=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Ta có : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
=> \(M=\frac{a}{d}=\frac{1995}{2019}=\frac{1}{2}\)
Vậy M = 1/2
Bài 2 :
Ta có : x - y cùng tính chẵn lẻ với x - y
: y - 2 cùng tính chẵn lẻ với y - 2
: 2 - x cùng tính chẵn lẻ với 2-x
=> | x - y | + | y - 2 | + | 2 - x | cùng tính chẵn lẻ với ( x- y ) + ( y - 2 ) + ( 2 - x )
= x -y + y - 2 + 2 - x = 0 là 1 số chẵn
=> | x - y | + | y - 2 | + | 2 - x | là 1 số chẵn
=> không có x ; y ; z thỏa mãn điều kiện trên
a)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}\)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(đpcm)
b)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+2=\frac{c}{d}+2\Leftrightarrow\frac{a+2b}{b}=\frac{c+2d}{d}\)(đpcm)
\(b^2\)= \(ac\)=> \(\frac{a}{b}\)= \(\frac{b}{c}\)(1)
\(c^2\)= \(bd\)=> \(\frac{b}{c}\)= \(\frac{c}{d}\)(2)
từ (1) và (2) => \(\frac{a}{b}\)= \(\frac{b}{c}\)= \(\frac{c}{d}\)=> \(\frac{a^3}{b^3}\)= \(\frac{c^3}{d^3}\)= \(\frac{b^3}{c^3}\)=> \(\frac{a^3}{b^3}\)= \(\frac{a}{b}\)* \(\frac{b}{c}\)* \(\frac{c}{d}\)= \(\frac{a}{d}\) (*)
\(\frac{a^3}{b^3}\)= \(\frac{b^3}{c^3}\)= \(\frac{c^3}{d^3}\)= \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (**)
Từ (*) và (**) => \(\frac{a}{d}\)= \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (đpcm)