Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=1\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=1^2=1\)
\(\Rightarrow x^2+y^2+z^2\ge\dfrac{1}{3}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Bài 3:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(4+1\right)\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)
\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)
\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2=1^2=1\)
\(\Rightarrow4x^2+y^2\ge\dfrac{1}{5}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{5}\)
bài 1 mình thấy sao sao ý !!
đề bài là với mọi a,b,c tùy ý và chứng minh chứ bạn làm là khai thác ý cần chứng minh để chỉ ra điều kiện mà
1) x2-4x+5+y2+2y=0
<=>x2-4x+4+y2+2y+1=0
<=>(x-2)2+(x+1)2=0
<=>x-2=0 và x+1=0
<=>x=2 và x=-1
2)2p.p2-(p3-1)+(p+3)2p2-3p5
<=>2p3-p3+1+2p3+6p2-3p5
<=>3p3+6p2-3p5+1
3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1
=1
4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3
=-18x2+3(đề sai)
b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x
=16
Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x
5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0
b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0
6)M+(12x4-15x2y+2xy2+7)=0
<=>M =-(12x4-15x2y+2xy2+7)
<=>M =-12x4+15x2y-2xy2-7
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho
a, 5x2 - 45x = 5x(x - 9)
b, 3x3y - 6x2y - 3xy3 - 6axy2 - 3a2xy + 3xy
= 3xy(x2 - 2x - y2 - 2ay - a2 + 1)
= 3xy[ (x2 - 2x + 1) - (a2 + 2ay + y2) ]
= 3xy[ (x - 1)2 - (a + y)2 ]
= 3xy(x - 1 + a + y)(x - 1 - a - y)
f, 3xy2 - 12xy + 12x
= 3x(y2 - 4y + 4)
= 3x(y - 2)2
g, 2x2 - 8x + 8
= 2(x2 - 4x + 4)
= 2(x - 2)2
h, 5x3 + 10x2y + 5xy2
= 5x( x2 + 2xy + y2 )
= 5x(x + y)2
k, x2 + 4x - 2xy - 4y + y2
= (x2 - 2xy + y2) + (4x - 4y)
= (x - y)2 + 4(x - y)
= (x - y)(x - y + 4)
i, x3 + ax2 - 4a - 4x
= (x3 - 4x) + (ax2 - 4a)
= x(x2 - 4) + a(x2 - 4)
= (x + a)(x2 - 4)
= (x + a)(x + 2)(x - 2)
Chúc bạn học tốt !
a) \(x^2-2x=24\)
\(\Rightarrow x^2-2x-24=0\)
\(\Rightarrow x^2-6x+4x-24=0\)
\(\Rightarrow x\left(x-6\right)+4\left(x-6\right)=0\)
\(\Rightarrow\left(x-6\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-6=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b) \(\left(5-2x\right)^2-16=0\)
\(\Rightarrow\left(5-2x\right)^2-4^2=0\)
\(\Rightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\)
\(\Rightarrow\left(1-2x\right)\left(9-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}1-2x=0\\9-2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\2x=9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)
c)Sửa đề
\(x^2-4x+4-9x^2+6x-1=0\)
\(\Rightarrow\left(x^2-4x+4\right)-\left(9x^2-6x+1\right)=0\)
\(\Rightarrow\left(x-2\right)^2-\left(3x-1\right)^2=0\)
\(\Rightarrow\left(x-2-3x+1\right)\left(x-2+3x-1\right)=0\)
\(\Rightarrow\left(-2x-1\right)\left(4x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-2x-1=0\\4x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2x=1\\4x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\)
d) \(2x^2+y^2+2xy-4x+4=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)=0\)
\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0\) với mọi x và y
\(\left(x-2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2\ge0\) với mọi x và y
Mà \(\left(x+y\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=-x\\x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)
A= x4-4x3-2x2+12x+9
= x4+4x2+9-4x3-6x2+12x
= ( x2-2x-3)2
⇒ A là số chính phương
B= 4x(x+y)(x+y+z)(x+z)+y2z2
= 4(x2+xy+xz)(x2+xy+xz+yz)+y2z2
Đặt x2+xy+xz=a
⇒ 4a(a+yz)+y2z2
= 4a2+4ayz+y2z2
= (2a+yz)2
= (2x2+2xy+2xz+yz)2
⇒ B là số chính phương