K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

Ta có:

\(a^{2006}+a^{2008}+b^{2006}+b^{2008}\ge2\left(a^{2007}+b^{2007}\right)\)

Dấu = xảy ra khi \(a=b=1\)

\(\Rightarrow S=a^{2009}+b^{2009}=2\)

NV
30 tháng 9 2020

Do \(\left\{{}\begin{matrix}a^{2008}\ge0\\b^{2008}\ge0\\c^{2008}\ge0\\a^{2008}+b^{2008}+c^{2008}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^{2008}\le1\\b^{2008}\le1\\c^{2008}\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{matrix}\right.\)

\(\Rightarrow a^{2009}+b^{2009}+c^{2009}\le a^{2008}+b^{2008}+c^{2008}\)

\(\Rightarrow a^{2009}+b^{2009}+c^{2009}\le1\)

Dấu "=" xảy ra khi và chỉ khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

Khi đó \(a^{2007}+b^{2008}+c^{2009}+2020=1+2020=2021\)

\(A=\sqrt{2007}-\sqrt{2006}=\frac{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}{\left(\sqrt{2007}+\sqrt{2006}\right)}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)(1)

\(B=\sqrt{2008}-\sqrt{2007}=\frac{\left(\sqrt{2008}-\sqrt{2007}\right)\left(\sqrt{2008}+\sqrt{2007}\right)}{\left(\sqrt{2008}+\sqrt{2007}\right)}=\frac{1}{\sqrt{2008}+\sqrt{2007}}\)(2)

Từ 1  và 2 => \(\frac{1}{\sqrt{2007}+\sqrt{2006}}>\frac{1}{\sqrt{2008}+\sqrt{2007}}\)

hay \(\sqrt{2007}-\sqrt{2006}>\sqrt{2008}-\sqrt{2007}\)

P/s tham khảo nha

6 tháng 3 2016

a=b

a>b

a<b

ba câu chắc chắn 1 câu đúng

6 tháng 3 2016

a=b

a>b

a<b

trong 3 câu trên chắc chắn 1 câu đúng

NV
30 tháng 9 2019

\(A-B=\sqrt{2009}-\sqrt{2007}+\sqrt{2010}-\sqrt{2008}+\sqrt{2011}-\sqrt{2015}\)

\(=\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}-\frac{4}{\sqrt{2011}+\sqrt{2015}}\)

Ta có \(\left\{{}\begin{matrix}\sqrt{2009}+\sqrt{2007}< \sqrt{2011}+\sqrt{2015}\\\sqrt{2010}+\sqrt{2008}< \sqrt{2011}+\sqrt{2015}\end{matrix}\right.\)

\(\Rightarrow\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}>\frac{2}{\sqrt{2011}+\sqrt{2015}}+\frac{2}{\sqrt{2011}+\sqrt{2015}}=\frac{4}{\sqrt{2011}+\sqrt{2015}}\)

\(\Rightarrow\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}-\frac{4}{\sqrt{2011}+\sqrt{2015}}>0\)

\(\Rightarrow A-B>0\Rightarrow A>B\)