K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

nhận thấy nếu áp dụng bất đẳng thức như bình thường thì ta sẽ bị ngược dấu, do đó ta dùng kỹ thuật cauchy ngược dấu

ta có:

\(\dfrac{a^3}{a^2+b^2}\)=a-\(\dfrac{a.b^2}{a^2+b^2}\)\(\ge\)a-\(\dfrac{a.b^2}{2ab}\)=a-\(\dfrac{b}{2}\)

\(\dfrac{b^3}{b^2+1}\)=b-\(\dfrac{b}{b^2+1}\)\(\ge\)b-\(\dfrac{b}{2b}\)=b-\(\dfrac{1}{2}\)

\(\dfrac{1}{a^2+1}\)=1-\(\dfrac{a^2}{a^2 +1}\)\(\ge\)1-\(\dfrac{a^2}{2a}\)=1-\(\dfrac{a}{2}\)

cộng từng vế của bất đẳng thức lại với nhau ta được:

\(\dfrac{a^3}{a^2+b^2}\)+\(\dfrac{b^3}{b^2+1}\)+\(\dfrac{1}{a^2+1}\)\(\ge\)a-\(\dfrac{b}{2}\)+b-\(\dfrac{1}{2}\)+1-\(\dfrac{a}{2}\)=\(\dfrac{a+b+1}{2}\)

DD
22 tháng 1 2021

Áp dụng bất đẳng thức Cauchy - Schwarz với 2 bộ số \(\left(a,b,c\right)\)và \(\left(1,1,1\right)\)ta có: 

\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a.1+b.1+c.1\right)^2=1\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{1}{3}\).

Dấu \(=\)xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\).

22 tháng 1 2021

Còn cách khác :3 

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :

\(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1^2}{3}=\frac{1}{3}\)

Đẳng thức xảy ra <=> a = b = c = 1/3

Vậy ta có điều phải chứng minh 

1 tháng 4 2017

áp dụng BĐT bunhia... ta có 

\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)

\(\Rightarrow a+2b\le3c\)

áp dụng cosi ta có 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)

dấu = xảy ra khi a=b=c

20 tháng 7 2020

Áp dụng BĐT svacsơ: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)

Ta có: \(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1}{3}\)

20 tháng 7 2020

Áp dụng BĐT Svac - xơ ta có : 

\(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1}{3}\)(đpcm)

9 tháng 11 2015

abc = 1 => a3b3c3=1

<=> \(a^3+b^3+c^3+2a^3b^3+2b^3c^3+2a^3c^3+3a^3b^3c^3\ge3a^2b+3b^2c+3c^2a+3\)

Áp dụng BĐT cauchy cho 3 số dương ta có : 

\(a^3b^3+b^3c^3+a^3c^3\ge3\sqrt[3]{a^6b^6c^6}\) <=> \(a^3b^3+b^3c^3+a^3c^3\ge3\)Dấu = xảy ra khi a=b=c (1)

Tương tự ta có : \(a^3b^3c^3+a^3b^3+a^3\ge3a^2b\)Dấu = xảy ra duy nhất khi a=b=c=1 (2)

\(a^3b^3c^3+b^3c^3+b^3\ge3b^2c\) Dấu = xảy ra duy nhất khi a=b=c=1 (3)

\(a^3b^3c^3+a^3c^3+c^3\ge3c^2a\)Dấu = xảy ra duy nhất khi a=b=c=1 (4)

Cộng (1),(2),(3),(4) vế theo vế ta được ĐPCM (Dấu = xảy ra khi a=b=c=1)

Đây là cách giải của mình k rõ bạn làm sao nếu có cách khác hay hơn thì xin chỉ giáo :D

11 tháng 4 2020

Zới mọi \(x,y>0\), áp dụng BĐT AM-GM ta có 

\(x^2+y^2=\frac{2xy\left(x^2+y^2\right)}{2xy}\le\frac{\frac{\left(2xy+x^2+y^2\right)^2}{4}}{2xy}=\frac{\left(x+y\right)^4}{8xy}\)

sử dụng kết quả trên ta thu đc các kết quả sau

\(a^2+c^2\le\frac{\left(a+c\right)^4}{8ac}=\frac{\left(a+c\right)^4bd}{8abcd}\le\frac{\left(a+c\right)^4\left(b+d\right)^2}{32abcd}\)

\(b^2+d^2\le\frac{\left(b+d\right)^4}{8bd}=\frac{\left(b+d\right)^4ac}{8abcd}\le\frac{\left(b+d\right)^4\left(c+a\right)^2}{32abcd}\)

Như zậy ta chỉ còn cần CM đc

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}+\frac{1}{da}\ge\frac{\left(a+c\right)^2\left(b+d\right)^2\left[\left(a+c\right)^2+\left(b+d\right)^2\right]}{32abcd}\)

BĐT trên tương đương zới

\(\frac{\left(a+c\right)\left(b+d\right)}{abcd}\ge\frac{\left(a+c\right)^2\left(b+d\right)^2\left[\left(a+c\right)^2+\left(b+d\right)^2\right]}{32abcd}\)

hay 

\(\left(a+c\right)\left(b+d\right)\left[\left(a+c\right)^2+\left(b+d\right)^2\right]\le32\)

đến đây bạn lại sử dụng kết quả trên ta có ĐPCM nhá

Dễ thấy đẳng thức xảy ra khi a=b=c=d=1

11 tháng 4 2020

mình ko chắc nhá