K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

\(A=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)

\(B=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)

mà \(\sqrt{12}+\sqrt{11}< \sqrt{14}+\sqrt{13}\)

nên A>B

10 tháng 10 2017

ta xét hiệu A - B= \(\left(\sqrt{10}+\sqrt{13}\right)-\left(\sqrt{11}+\sqrt{12}\right)\) = \(\left(\sqrt{13}-\sqrt{12}\right)-\left(\sqrt{11}-\sqrt{10}\right)\)

\(\le\sqrt{13-12}-\sqrt{11-10}=1-1=0\)

29 tháng 7 2018

tính

\(\frac{a-\sqrt{ab}}{b-\sqrt{ab}}+\frac{b-\sqrt{ab}}{a+\sqrt{ab}}=\frac{a-ab+b-ab}{ab+b\sqrt{ab}-a\sqrt{ab}-ab}=\frac{a+b}{\sqrt{ab}\left(b-a\right)}\)

còn lại mk chịu

29 tháng 7 2018

bạn ghi rõ hơn nữa được không chứ mình chưa hiểu lắm

11 tháng 7 2016

a) Ta có : \(\left(\sqrt{11}+\sqrt{13}\right)^2=11+2\sqrt{11.13}+13=24+2\sqrt{143}\)

\(\left(2.\sqrt{12}\right)^2=4.12=24+2.\sqrt{144}\)

mà \(\sqrt{144}>\sqrt{143}\Rightarrow24+2\sqrt{144}>24+2\sqrt{143}\Rightarrow\left(2.\sqrt{12}\right)^2>\left(\sqrt{11}+\sqrt{13}\right)^2\)

\(2.\sqrt{12}>\sqrt{11}+\sqrt{13}\)

11 tháng 7 2016

b) Ta có : \(\left(\sqrt{69}-\sqrt{68}\right)-\left(\sqrt{68}-\sqrt{69}\right)\)

        \(\Leftrightarrow\sqrt{69}+\sqrt{67}-2\sqrt{68}\)

Từ kq câu a \(\Rightarrow\sqrt{69}+\sqrt{67}< 2\sqrt{68}\)

\(\Rightarrow\sqrt{69}+\sqrt{67}-2\sqrt{68}< 0\)

\(\Rightarrow\left(\sqrt{69}-\sqrt{68}\right)-\left(\sqrt{68}-\sqrt{67}\right)< 0\)

\(\Rightarrow\sqrt{69}-\sqrt{68}< \sqrt{68}-\sqrt{67}\)

22 tháng 9 2019

a) \(\left(\sqrt{11}+\sqrt{14}\right)^2=25+\sqrt{154}\)

\(\left(2\sqrt{12}\right)^2=24+\sqrt{144}\)

Vậy \(2\sqrt{12}< \sqrt{11}+\sqrt{14}\)

b) \(\left(\sqrt{a+1}+\sqrt{a+3}\right)^2=2a+4+\sqrt{\left(a+1\right)\left(a+3\right)}\)

\(\left(2\sqrt{a+2}\right)^2=2a+4+\sqrt{\left(a+2\right)\left(a+2\right)}\)

Vậy \(\sqrt{a+1}+\sqrt{a+3}< 2\sqrt{a+2}\)

16 tháng 6 2017

a)    \(\sqrt{7}-\sqrt{5}< \sqrt{5}-\sqrt{3}\)

b)     \(\sqrt{15}-\sqrt{14}< \sqrt{14}-\sqrt{13}\)

6 tháng 6 2019

\(\frac{1+\sqrt{3}}{\sqrt{3}-1}=\frac{\left(1+\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=2+\sqrt{3}\)

\(\frac{2}{\sqrt{2}-1}=\frac{2\sqrt{2}+2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}+2=\sqrt{8}+2\)

\(\Rightarrow\frac{2}{\sqrt{2}-1}>\frac{1+\sqrt{3}}{\sqrt{3}-1}\)

27 tháng 6 2017

\(\sqrt{12}-\sqrt{11}\)   bé hơn \(\sqrt{11}-\sqrt{10}\) 

20 tháng 6 2016

a)A= \(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)=\(\sqrt{6+2\sqrt{3}+2}\)

=> A2=8+2\(\sqrt{3}\)

B=\(\sqrt{3}+1\)=> B2=10+2\(\sqrt{3}\)

=>A>B