K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2023

Trước tiên ta cần phải rút gọn biểu thức A trước.

Ta có : \(A\text{=}\dfrac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}}\)

\(A\text{=}\dfrac{\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\)

\(A\text{=}\dfrac{\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}}{\sqrt{x+\sqrt{2x+1}+\sqrt{x-\sqrt{2x+1}}}}\)

\(A\text{=}\dfrac{\sqrt{x-1}+1+|\sqrt{x-1}-1|}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\)

\(A\text{=}\dfrac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\left(x\ge2\right)\)

\(A\text{=}\dfrac{2\sqrt{x-1}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}\)

\(A\text{=}\dfrac{2\sqrt{2\left(x-1\right)}}{\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}}\)

\(A\text{=}\dfrac{2\sqrt{2\left(x-1\right)}}{\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}}\)

\(A\text{=}\dfrac{2\sqrt{2\left(x-1\right)}}{\sqrt{2x-1}+1+\sqrt{2x-1}-1}\left(x\ge2\right)\)

\(A\text{=}\dfrac{\sqrt{2x-2}}{\sqrt{2x-1}}\)

Xét tử thức và mẫu thức của A ta thấy :

\(\sqrt{2x-2}< \sqrt{2x-1}\left(x\ge2\right)\)

\(\Rightarrow A< 1\left(đpcm\right)\)

 

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

A)

Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )

\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)

\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)

\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)

Có:

\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)

\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

B)

\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)

\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)

\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)

\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$

T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)

\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)

NV
5 tháng 6 2019

ĐKXĐ:...

\(A=\left(\frac{\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a}+1}\right).\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}=\frac{1}{a}\)

\(C=\left(\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(=\left(\frac{\left(\sqrt{x}+1\right)}{-\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)}.\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)}\)

\(=\left(-1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\sqrt{x}=\left(\frac{-x-\sqrt{x}-1+x+\sqrt{x}}{x+\sqrt{x}+1}\right)\sqrt{x}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}\)

26 tháng 7 2018

\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)

\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x}\)

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

\(A=\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\)

\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1+2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}}{2x-1}-1\)

\(=\dfrac{2x\sqrt{2}+2\sqrt{2x}-1+2x-2x+1}{2x-1}=\dfrac{2x\sqrt{x}+2\sqrt{2x}}{2x-1}\)

\(B=\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)

\(=1+\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-2x-\sqrt{2x}-x\sqrt{2}-\sqrt{x}}{2x-1}\)

\(=1+\dfrac{-2\sqrt{x}-1-2x}{2x-1}\)

\(=\dfrac{2x-1-2\sqrt{x}-1-2x}{2x-1}=\dfrac{-2-2\sqrt{x}}{2x-1}\)

\(P=A:B=\dfrac{2x\sqrt{x}+2\sqrt{2x}}{2x-1}:\dfrac{-2\sqrt{x}-2}{2x-1}\)

\(=\dfrac{2\sqrt{x}\left(x+\sqrt{2}\right)}{2x-1}\cdot\dfrac{2x-1}{-2\left(\sqrt{x}+1\right)}=\dfrac{-\sqrt{x}\left(x+\sqrt{2}\right)}{\sqrt{x}+1}\)

b: Thay \(\sqrt{x}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}\) vào P, ta được:

\(P=\left[-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}\cdot\left(\dfrac{3+2\sqrt{2}}{2}+\sqrt{2}\right)\right]:\left[\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}+1\right]\)

\(=\left[\dfrac{-\sqrt{2}\left(\sqrt{2}+1\right)}{2}\cdot\dfrac{3+4\sqrt{2}}{2}\right]:\left[\dfrac{2+\sqrt{2}+2}{2}\right]\)

\(=\dfrac{-\sqrt{2}\left(\sqrt{2}+1\right)\left(4\sqrt{2}+3\right)}{4}\cdot\dfrac{2}{4+\sqrt{2}}\)

\(=\dfrac{-\left(\sqrt{2}+1\right)\left(4\sqrt{2}+3\right)}{2\cdot\left(2\sqrt{2}+1\right)}=\dfrac{-\left(4\sqrt{2}+3\right)}{3\cdot\left(3+\sqrt{2}\right)}\)