Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{A}{\sqrt{2}}\)=\(\frac{\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{2x-1+2\sqrt{2x-1}+1}-\sqrt{2x-1-2\sqrt{2x-1}+1}}\) (DK \(x\ge1\)
\(=\frac{\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|}{\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|}\)
vs \(x\ge2\) \(\frac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{2x-1}+1-\sqrt{2x-1}+1}=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\) \(\Rightarrow A=\sqrt{2x-2}\)
vs \(1\le x< 2\) \(\frac{\sqrt{x-1}+1+1-\sqrt{x-1}}{\sqrt{2x-1}+1-1+\sqrt{2x-1}}=\frac{1}{\sqrt{2x-1}}\) \(\Rightarrow A=\frac{\sqrt{2}}{\sqrt{2x-1}}\)
\(\sqrt{2X-1}\ge1\Leftrightarrow X\ge1\)NEN SUY RA THEO CACH LAM CUA TO
THOI U AM BUSY SEE YOU AGAIN
\(A=\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\)
\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1+2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}}{2x-1}-1\)
\(=\dfrac{2x\sqrt{2}+2\sqrt{2x}-1+2x-2x+1}{2x-1}=\dfrac{2x\sqrt{x}+2\sqrt{2x}}{2x-1}\)
\(B=\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=1+\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-2x-\sqrt{2x}-x\sqrt{2}-\sqrt{x}}{2x-1}\)
\(=1+\dfrac{-2\sqrt{x}-1-2x}{2x-1}\)
\(=\dfrac{2x-1-2\sqrt{x}-1-2x}{2x-1}=\dfrac{-2-2\sqrt{x}}{2x-1}\)
\(P=A:B=\dfrac{2x\sqrt{x}+2\sqrt{2x}}{2x-1}:\dfrac{-2\sqrt{x}-2}{2x-1}\)
\(=\dfrac{2\sqrt{x}\left(x+\sqrt{2}\right)}{2x-1}\cdot\dfrac{2x-1}{-2\left(\sqrt{x}+1\right)}=\dfrac{-\sqrt{x}\left(x+\sqrt{2}\right)}{\sqrt{x}+1}\)
b: Thay \(\sqrt{x}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}\) vào P, ta được:
\(P=\left[-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}\cdot\left(\dfrac{3+2\sqrt{2}}{2}+\sqrt{2}\right)\right]:\left[\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}+1\right]\)
\(=\left[\dfrac{-\sqrt{2}\left(\sqrt{2}+1\right)}{2}\cdot\dfrac{3+4\sqrt{2}}{2}\right]:\left[\dfrac{2+\sqrt{2}+2}{2}\right]\)
\(=\dfrac{-\sqrt{2}\left(\sqrt{2}+1\right)\left(4\sqrt{2}+3\right)}{4}\cdot\dfrac{2}{4+\sqrt{2}}\)
\(=\dfrac{-\left(\sqrt{2}+1\right)\left(4\sqrt{2}+3\right)}{2\cdot\left(2\sqrt{2}+1\right)}=\dfrac{-\left(4\sqrt{2}+3\right)}{3\cdot\left(3+\sqrt{2}\right)}\)
\(A=\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right):\dfrac{2\sqrt{x}-1}{\sqrt{x}-x}=\left[\dfrac{\left(2x+\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{\left(1-x\right)\left(x-\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-x\right)\left(2x+\sqrt{x}-1\right)}{\left(1-x\right)\left(x-\sqrt{x}+1\right)}\right]:\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}=\dfrac{\left(2x+\sqrt{x}-1\right)\left(x-\sqrt{x}+1+\sqrt{x}-x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}=\dfrac{\sqrt{x}\left(2x+2\sqrt{x}-\sqrt{x}-1\right)}{\left(1+\sqrt{x}\right)\left(2\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
dễ mà bạn quy đồng biến đỗi là ra chứ làm đánh mấy bài này ra tốn tg lắm