Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, A =\(\frac{\left(n-4\right)+3}{n-4}\) =1+\(\frac{3}{n-4}\)
Để A là một số nguyên thì 3\(⋮\)n-4\(\Leftrightarrow\) n-4 \(\in\)Ư(3)={1;-1;3;-3}
n-4 | 1 | -1 | 3 | -3 |
n | 5 | 3 | 7 | 1 |
Vậy n\(\in\){5;3;7;1} thì A là một số nguyên.
a, để A là một phân số thì n phải là một số nguyên
a) A là phân số khi n+6 là số nguyên khác 0
\(\Rightarrow n\ne-6\)
Vậy n là số nguyên khác -6.
b) Với n=2, ta có : \(\frac{-3}{n+6}=\frac{-3}{2+6}=\frac{-3}{8}\)
Với n=4, ta có : \(\frac{-3}{n+6}=\frac{-3}{4+6}=\frac{-3}{10}\)
c) A là số nguyên khi -3\(⋮\)n+6
\(\Rightarrow n+6\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-7;-5;-9;-3\right\}\)
a)Để A là phân số thì \(n+6\ne0\Leftrightarrow n\ne-6\)
Vậy để A là phân số thì \(n\ne-6\)
b) Thay n=2(tm) vào A, ta có:
\(A=\frac{-3}{2+6}=\frac{-3}{8}\)
Thay n=4 (tm) vào A, ta có:
\(A=\frac{-3}{4+6}=\frac{-3}{10}\)
c) Để A là số nguyên \(\Rightarrow\frac{-3}{n+6}\)là số nguyên
\(\Rightarrow n+6\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng giá trị
n+6 | -3 | -1 | 1 | 3 |
n | -9 | -7 | -5 | -3 |
b) Ta có n-1=n+4-5
Để A là số nguyên thì n-1 phải chia hết cho n+4
=> n+4-5 chia hết cho n+4
=> n+4 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
a) Để A là phân số thì \(n+4\ne0\)\(\Leftrightarrow n\ne-4\)
b) \(A=\frac{n-1}{n+4}=\frac{n+4-5}{n+4}=1-\frac{5}{n+4}\)
Vì \(1\inℤ\)\(\Rightarrow\)Để A là số nguyên thì \(5⋮x+4\)
\(\Rightarrow x+4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)\(\Rightarrow x\in\left\{-9;-5;-3;1\right\}\)
Vậy \(x\in\left\{-9;-5;-3;1\right\}\)