K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

a)2x+y=7(2x+y)=14x+7y

Do 2x+9 chia hết cho 9 =>14x+7y chia hết cho 9

9x chia hết cho 9 =>14x+7y-9x=5x+7y chia hết cho 9

b)p và p+2 là số nguyên tố lớn hơn 3 nên p+p+2=2p+2 chia hết cho 2

p là số nguyên tố lớn hơn 3 nên

*)P=3k(loại vì 3k là hợp số  có ước là 3 và k)

*)p=3k+1(loại vì số nguyên tố lớn hơn 3 là số lẻ =>3k+1 là số chẵn)

*)p=3k+2(TM)

=>2p+2=6k+4+2=6k+6 chia hết cho 3

2p+2 chia hết cho 2 và 3=>2p+2 chia hết cho 6

=>(2p+2).1/2=p+1 chia hết cho 6

22 tháng 2 2018

^.^

^-^

^_^

28 tháng 10 2016

Vì a; a + k; a + 2k là ba số nguyên tố lớn hơn 3 nên chúng là số lẻ. Vậy thì a + a + k = 2a + k là số chẵn. Từ đó suy ra k chia hết cho 2.

 Do a nguyên tố lớn hơn 3 nên a = 3m  + 1 hoặc a = 3m  + 2 (m nguyên).

Với a = 3m + 1:

+ Nếu k = 3p + 2 thì a + k = 3m + 1 + 3p + 2 chia hết 3 (Vô lý vì a + k nguyên tố lớn hơn 3).

+ Nếu k = 3p + 1 thì a + 2k = 3m + 1 + 6p + 2 chia hết 3 (Vô lý vì a + 2k nguyên tố lớn hơn 3).

Vậy k = 3p hay k chia hết cho 3.

Với a = 3m + 2:

+ Nếu k = 3p + 2 thì a + 2k = 3m + 2 + 6p + 6 chia hết 3 (Vô lý vì a + 2k nguyên tố lớn hơn 3).

+ Nếu k = 3p + 1 thì a + k = 3m + 2 + 3p + 1 chia hết 3 (Vô lý vì a + k nguyên tố lớn hơn 3).

Vậy k = 3p hay k chia hết cho 3.

Tóm lại k chia hết 2 và k chia hết 3, mà (2; 3) = 1 nên k chia hết cho 6.

4 tháng 1 2018

Bài 1 :

 Gọi đó là p, q, r > 3 => p, q, r không chia hết cho 3. 
=> theo nguyên lý Dirichlet trong 3 số p, q, r phải có ít nhất 2 số chia cho 3 cho cùng số dư. 
Do 2d = 2(q - p) = 2(r - q) = r - p nên 2d chia hết cho 3 => d chia hết cho 3. 
d = q - p cũng chia hết cho 2 do p, q đều lẻ 
Vậy d chia hết cho 2*3 = 6

11 tháng 11 2017

Số nguyên tố lớn hơn có dạng 3k+1 và 3k+2 

Xét p có dạng 3k+1

=> ( p - 1 ) ( p + 4 ) = ( 3k+1 - 1 ) ( 3k+1 + 4 )

      =  3k( 3k+5 ) 

Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ 

=> 3k+5 là số chẵn 

=> 3k( 3k + 5 ) chia hết cho cả 3 và 2

=> 3k( 3k + 5 ) chia hết cho 6 kéo theo ( p-1 ) ( p+4) chia hết cho 6

Xét p có dạng 3k+2

=> ( p - 1 ) ( p + 4 ) = ( 3k + 2 - 1 ) ( 3k + 2 + 4 )

      = ( 3k+1 ) ( 3k + 6 ) 

      = ( 3k + 1 ) [ 3( k + 2 ) ]

Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ

=> 3k+1 là số chẵn 

=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 2 và 3 

=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 6 kéo theo ( p - 1 ) ( p + 4 ) chia hết cho 6

Vậy với mọi p ta có ( p - 1 ) ( p + 4 ) chia hết cho 6 )

P/s : đây là dạng toán chứng minh đơn giản nhất của khối 6 

19 tháng 11 2017

Số nguyên tố lớn hơn có dạng 3k+1 và 3k+2 

Xét p có dạng 3k+1: ta có

=> ( p - 1 ) ( p + 4 ) = ( 3k+1 - 1 ) ( 3k+1 + 4 )

      =  3k( 3k+5 ) 

Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ 

=> 3k+5 là số chẵn 

=> 3k( 3k + 5 ) chia hết cho cả 3 và 2

=> 3k( 3k + 5 ) chia hết cho 6 kéo theo ( p-1 ) ( p+4) chia hết cho 6

Xét p có dạng 3k+2

=> ( p - 1 ) ( p + 4 ) = ( 3k + 2 - 1 ) ( 3k + 2 + 4 )

      = ( 3k+1 ) ( 3k + 6 ) 

      = ( 3k + 1 ) [ 3( k + 2 ) ]

Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ

=> 3k+1 là số chẵn 

=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 2 và 3 

=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 6 kéo theo ( p - 1 ) ( p + 4 ) chia hết cho 6

Vậy với mọi p ta có ( p - 1 ) ( p + 4 ) chia hết cho 6

14 tháng 1 2018

a nguyên tố > 3 nên a lẻ => a-1 chia hết cho 2

=> (a-1).(a+4) chia hết cho 2 (1)

a nguyên tố > 3 nên a ko chia hết cho 3

+, Nếu a chia 3 dư 1 => a-1 chia hết cho 3 => (a-1).(a+4) chia hết cho 3

+, Nếu a chia 3 dư 2 => a+4 chia hết cho 3 => (a-1).(a+4) chia hết cho 3

Vậy (a-1).(a+4) chia hết cho 3 (2)

Từ (1) và (2) => (a-1).(a+4) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

=> ĐPCM

Tk mk nha

Vào câu hỏi tương tự đi bạn

2 tháng 7 2016

a là số ngyen tố >3 nên a ko chia hết cho2, 3

=> a-1 chia hêt cho 2

neu a chia 3 du 1 => a-1 chia het cho 3

neu a chia 3 du 2 => a+4 chia het cho 3

=> achia het cho 3 va 2=> a chia het cho 6