K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0. 
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b.

8 tháng 9 2016

+ Nếu a = b thì a + b = a + a

=> a + b = 2.a < a.b (vì b > 2)

+ Nếu a < b thì a + b < b + b

=> a + b < 2.b < a.b (vì a > 2)

+ Nếu a > b thì a + b < a + a

=> a + b < 2.a < a.b (vì b > 2)

Vậy với a,b thuộc N*; a > 2; b > 2 thì a + b < a.b (đpcm)

8 tháng 9 2016

Cậu có zing hay olm ko àm teen quen quen thế nhỉ?

8 tháng 1 2016

Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0.
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b.

1 tháng 10 2016

Giả sử a = 1

b = 3

Thì : 1 + 3 < 1.3

Vậy thử a = 0

b = 3

Thì : 0 + 3 > 0.3

0 và 1 mà không được thì đã không có số thỏa mãn đề bài

1 tháng 10 2016

Do vai trò của a;b bình đẳng nên giả sử \(a\ge b\)

=> \(a+b\le2a< a.b\)  

( do b > 2)

Chưng to ...

4 tháng 7 2015

\(a>2\Rightarrow a-2>0\)

\(b>2\Rightarrow b-2>0\)

\(\Rightarrow\left(a-2\right)\left(b-2\right)>0\Leftrightarrow ab-2a-2b+4>0\)

\(\Leftrightarrow ab+4>2\left(a+b\right)\)

Ta có: \(a.b>2.2=4\Rightarrow ab+ab>ab+4>2\left(a+b\right)\)

\(\Rightarrow2ab>2\left(a+b\right)\)

\(\Rightarrow ab>a+b\)

14 tháng 10 2017

a + b < a . b

=> a + b là 1 tổng và 1 tổng thì ta có : a+ b = a+ b

=> a . b là 1 tích và 1 tích thì sẽ đc nhân nhiều lần lên phụ thuộc vào phép tính( a,b thuộc N*),ta có : a .b = a + a + a +...

=> Ta có ví dụ : a= 5;b=3.

=> 5 + 3 < 5 . 3 

=> 8 < 15.

=> a+b<a.b

29 tháng 5 2015

Vì a > 2 và b > 2 nên ta đặt a = 2 + m; b = 2 + n          ( m,n \(\in\) N* )

 a + b = ( 2 + m ) + ( 2 + n ) = 4 + ( m + n )                                                     ( 1 )

 a . b = ( 2 + m ) . ( 2 + n ) = ( 2 + m ) . 2 + ( 2 + m ) . n = 4 + 2m + 2n + mn = 4 + 2 . ( m + n ) + m . n   ( 2 )

 Do  m,n \(\in\) N* nên 2 . ( m + n ) > m + n và m .n > 0

Từ ( 1 ) và ( 2 ) suy ra a + b < a . b

29 tháng 5 2015

đề sai: Ví dụ a = b = 1 => không đúng

23 tháng 4 2017

a>2=>a.b>2.b

b>2->a.b>2.a

->ab+ab>2b+2a

->2ab>2(a+b)

->ab>a+b