Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sorry lam lon
M=(x^2+y^2/xy=x^2/xy+y^2/xy=x^2/4xy +x^2/4xy +x^2/4xy+x^2/4xy + 4y^2/4xy
Do x,y > 0 nên áp dụng cô si cho 5 số dương ta có :
M ≥ 5 . Căn 5 của (x^2/4xy . x^2/4xy .x^2/4xy.4y^2/4xy)=5.căn 5 của (x^3/256y^3) (*)
Mặt khác do x ≥ 2y =>x^3 ≥ 8y^3 nên từ (*) ta có :
M ≥ 5.can 5 cua (8y^3/256y^3)=5.can 5 cua (1/32)=5.1/2 =5/2
Dau " ≥ " khi
{x^2/4xy = 4y^2/4xy
{x^3=8y^3
=>x ≥ 2y
Vậy :x ≥ 2y
Áp dụng bđt quen thuộc \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a;b;c>0\right)\) được
\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\ge\frac{9}{x+2y}=\frac{9}{3}=3\)
Dấu "=" tại x = y = 1
\(5\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)\(\Leftrightarrow\)\(x+y+z\ge\sqrt{15}\)
\(\frac{x^2}{\sqrt{8x^2+3y^2+14xy}}=\frac{x^2}{\sqrt{8x^2+2xy+3y^2+12xy}}\ge\frac{x^2}{\sqrt{9x^2+12xy+4y^2}}=\frac{x^2}{3x+2y}\)
\(A\ge sigma\frac{x^2}{3x+2y}\ge\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=\frac{x+y+z}{5}\ge\sqrt{\frac{3}{5}}\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{5}{3}}\)
mình làm cho bạn 2 cách nha
Cách 1 )
ta có \(1\le y\le2\Leftrightarrow\frac{1}{y^2+1}\ge\frac{1}{2x+3}\)
ta có \(xy+2\ge2y\Leftrightarrow x\ge\frac{2\left(y-1\right)}{y}\ge0\)
ta có \(M=\frac{x^2+4}{y^2+1}=\left(x^2+4\right).\frac{1}{y^2+1}\ge\left(2x+3\right).\frac{1}{2x+3}=1\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
zậy \(minM=\frac{x^2+4}{y^2+1}khi\hept{\begin{cases}x=1\\y=2\end{cases}}\)
cách 2)
ta có \(1\le y\le2;xy+2\ge2y\Leftrightarrow4xy+8\ge8y;4x^2+y^2+8\ge4xy+8\)
từ đó ta có
\(4\left(x^2+4\right)\ge-y^2+8+8y=4\left(y^2+1\right)+\left(5y+2\right)\left(2-y\right)\ge4\left(x^2+1\right)\Rightarrow M=1\)
zậy kết luận như cách 1
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3
Biến đổi từ giả thiết
\(x^3+y^3+6xy\le8\)
\(\Leftrightarrow...\Leftrightarrow\left(x+y-2\right)\left(x^2-xy+y^2+2x+2y+4\right)\le0\)
\(\Leftrightarrow x+y-2\le0\)
(Do \(x^2-xy+y^2+2x+2y+4=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}+2x+2y+4>0\forall x;y>0\))
\(\Leftrightarrow x+y\le2\)
Và áp dụng các bđt \(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(a;b>0\right)\)
Khi đó \(P=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{ab}+ab\right)+\frac{3}{2ab}\)
\(\ge\frac{4}{a^2+b^2+2ab}+2+\frac{6}{\left(a+b\right)^2}\)
\(=\frac{4}{\left(a+b\right)^2}+2+\frac{6}{\left(a+b\right)^2}\ge\frac{9}{2}\)
Dấu "=" <=> a= b = 1
Bài 1:
\(P=\frac{2x^2+y^2-2xy}{xy}=\frac{2x}{y}+\frac{y}{x}-2=\frac{7x}{4y}+(\frac{x}{4y}+\frac{y}{x})-2\)
Áp dụng BĐT Cô-si cho các số dương:
\(\frac{x}{4y}+\frac{y}{x}\geq 2\sqrt{\frac{x}{4y}.\frac{y}{x}}=1\)
\(\frac{7x}{4y}\geq \frac{7.2y}{4y}=\frac{7}{2}\) do $x\geq 2y$
Do đó: \(P\geq \frac{7}{2}+1-2=\frac{5}{2}\)
Vậy $P_{\min}=\frac{5}{2}$ khi $x=2y$
Bài 2:
\(P=\frac{x^2+y^2}{x^2y^2}+\frac{x^2y^2}{x^2+y^2}=\frac{x^2+y^2}{\frac{1}{4}}+\frac{1}{4(x^2+y^2)}=4(x^2+y^2)+\frac{1}{4(x^2+y^2)}\)
Áp dụng BĐT Cô-si :
\(\frac{x^2+y^2}{4}+\frac{1}{4(x^2+y^2)}\geq 2\sqrt{\frac{x^2+y^2}{4}.\frac{1}{4(x^2+y^2)}}=\frac{1}{2}(1)\)
\(x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|=2.\frac{1}{2}=1\)
\(\Rightarrow \frac{15(x^2+y^2)}{4}\geq \frac{15}{4}(2)\)
Lấy \((1)+(2)\Rightarrow P\geq \frac{15}{4}+\frac{1}{2}=\frac{17}{4}\)
Vậy \(P_{\min}=\frac{17}{4}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
\(M=\frac{x^2}{xy}+\frac{y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\frac{x}{y}+\frac{1}{\frac{x}{y}}\)
\(x\ge2y\Rightarrow\frac{x}{y}\ge2\)
\(\Rightarrow M\ge2+\frac{1}{2}=\frac{5}{2}\)
GTNN của M là \(\frac{5}{2}\)khi \(a=2y\)
\(\frac{x}{y}>=2\)=>\(\frac{y}{x}=< \frac{1}{2}\)
\(M=\frac{x}{y}+\frac{y}{x}=\frac{x}{y}+\frac{4y}{x}-\frac{3y}{x}\)
ta có \(\frac{x}{y}+\frac{4y}{x}>=4\)(cô si)(1)
\(-\frac{3y}{x}>=-\frac{3}{2}\)(2)
cộng 1 với 2=>M>=5/2
xảy ra dâu = khi x/y=2