K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2015

Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)

Với a, b > 0, ta có: 

\(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\)

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.

Phân phối số hạng hợp lí để áp dụng Côsi

\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(\ge6\)

Dấu "=" xảy ra khi a = b = 1/2.

\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)

\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)

\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)

31 tháng 7 2017

Ta có: \(ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow\left(a+b\right)^2\ge4\Rightarrow a+b\ge2\)

Và \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\ge2\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{b+1}=a^3-\frac{a^3b}{b+1}\ge a^3-\frac{a^3b}{2\sqrt{b}}=a^3-\frac{a^3\sqrt{b}}{2}\)

Tương tự cho ta cũng có:\(\frac{b^3}{a+1}\ge b^3-\frac{b^3\sqrt{a}}{2}\)

\(\Rightarrow Q\ge a^3+b^3-\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\ge2-\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\left(1\right)\)

TIếp tục xài AM-GM: \(\sqrt{b}\le\frac{b+1}{2}\Rightarrow a^3\sqrt{b}=\frac{a^3b+a^3}{2}\)

\(\Rightarrow\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\le\frac{\frac{a^3b+a^3}{2}+\frac{ab^3+b^3}{2}}{2}=\frac{a^3b+ab^3+a^3+b^3}{4}\)

\(\Rightarrow2-\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\ge2-\frac{a^3b+ab^3+a^3+b^3}{4}\)

Cần chứng minh \(2-\frac{a^3b+ab^3+a^3+b^3}{4}\ge1\)\(\Leftrightarrow\frac{a^3b+ab^3+a^3+b^3}{4}\ge1\)

\(\Leftrightarrow a^3b+ab^3+a^3+b^3\ge4\Leftrightarrow a^3b+ab^3\ge2\) vì \(a^3+b^3\ge2\)

\(\Leftrightarrow\left(ab\right)^2\left(a+b\right)\ge2\) đúng vì ab=1 và \(a+b\ge2\)

\(\Rightarrow Q_{Min}=2-\frac{a^3\sqrt{b}+b^3\sqrt{a}}{2}\ge2-1=1\)

Khi a=b=1

4 tháng 2 2018

từ giả thiết, ta có \(\frac{a^2}{b}+\frac{b^2}{a}\le1\)

Mà \(\frac{a^2}{b}+\frac{b^2}{a}\ge\frac{\left(a+b\right)^2}{a+b}=a+b\Rightarrow a+b\le1\)

Mà từ BĐT cô-si, ta luôn có \(\left(a+b\right)^3\ge4ab\left(a+b\right)\ge4\left(a^3+b^3\right)\left(a+b\right)\Rightarrow\frac{\left(a+b\right)^3}{4}\ge\left(a^3+b^3\right)\left(a+b\right)\)

Mà áp dụng BĐT Bu-nhi-a , ta có \(\left(a^3+b^3\right)\left(a+b\right)\ge\left(a^2+b^2\right)^2\)

=>\(\frac{\left(a+b\right)^3}{4}\ge\left(a^2+b^2\right)^2\Rightarrow\frac{1}{4}\ge\left(a^2+b^2\right)^2\Rightarrow a^2+b^2\le\frac{1}{2}\)

Mà \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}=\frac{4}{2+\frac{1}{2}}=\frac{8}{5}\)

Dấu = xảy ra ,=> a=b=1/2

^_^

4 tháng 2 2018

\(a^3+b^3\le ab\Leftrightarrow ab\left(a+b\right)\le ab\Leftrightarrow a+b\le1.\).Ta có: \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}.\)

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{4}{2+a^2+b^2}=\frac{4}{2+\left(a+b\right)^2-2ab}\ge\frac{4}{2+1-\frac{1}{2}}\ge\frac{8}{5}.\)

Dấu bằng xảy ra khi a=b=1/2.

AH
Akai Haruma
Giáo viên
29 tháng 5 2021

Lời giải:

\(P=\frac{1}{a^3+b^3}+\frac{1}{ab}=\frac{1}{(a+b)^3-3ab(a+b)}+\frac{1}{ab}=\frac{1}{1-3ab}+\frac{1}{ab}\)

\(=\frac{1}{1-3ab}+\frac{3}{3ab}\geq \frac{(1+\sqrt{3})^2}{1-3ab+3ab}=(1+\sqrt{3})^2\) theo BĐT Cauchy-Schwarz

Vậy \(P_{\min}=(1+\sqrt{3})^2\)

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

pro2k7trần đưc thái: dấu "=" xảy ra khi \(\frac{1}{1-3x}=\frac{1}{\sqrt{3}x}\) 

\(\Leftrightarrow x=\frac{3-\sqrt{3}}{6}\Leftrightarrow ab=\frac{3-\sqrt{3}}{6}\)

Kết hợp $a+b=1$ thì theo Viet đảo em có:

\((x,y)=(\frac{3-\sqrt{6\sqrt{3}-9}}{6}; \frac{3+\sqrt{6\sqrt{3}-9}}{6})\) và hoán vị.