K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

Theo bđt tam giác, ta có : \(\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}\) \(\Leftrightarrow\begin{cases}bc+ac>c^2\\ab+ac>a^2\\ab+bc>b^2\end{cases}\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\) 

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< 1\)

\(\Leftrightarrow a^2+b^2+c^2< \frac{1}{2}\)

12 tháng 6 2015

Do 0 < a,b,c < 1 nên  (a - 1)(b - 1)(c - 1) < 0

hay abc < ab + bc + ca - (a + b + c) + 1 = ab + bc + ca - 1

suy ra:a+ b+ c+ 2abc < a+ b+ c2 + 2(ab + bc + ca - 1) = (a + b + c)- 2 = 2- 2 = 2

11 tháng 6 2015

a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a²

 tương tự: bc+ab > b²; ca+bc > c²  

cộng lại: 2ab+2bc+2ca > a²+b²+c² (*)  

g thiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)}  

=> 2 > a²+b²+c² (đpcm) 

4 tháng 10 2016

Ta có a < b + c

=> 2a < a + b + c = 2

=> a < 1

Tương tự b < 1, c < 1

Từ đó ta có (1 - a)(1 - b)(1 - c) > 0

<=> -abc + ab + bc + ca - a - b - c + 1 > 0

<=> abc < ab + bc + ca - 1

<=> 2abc < 2(ab + bc + ca) - 2

a2 + b2 + c2 + 2abc < a2 + b2 + c2 + 2(ab + bc + ca) - 2 = (a + b + c)2 - 2 = 2

4 tháng 10 2016

Điều phải cm tương đương với

\(\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+2abc< 2\)

\(4-2\left(ab+bc+ca\right)+2abc-2< 0\)

\(2-ab-bc-ca+abc-1< 0\)

Ta có: a,b,c là 3 cạnh của tam giác nên thỏa mãn bđt:\(\hept{\begin{cases}c< a+b\\b< c+a\\a< c+b\end{cases}}\)<=>\(\hept{\begin{cases}2c< a+b+c\\2b< a+b+c\\2a< a+b+c\end{cases}}\)=>\(\hept{\begin{cases}c< 1\\b< 1\\a< 1\end{cases}}\)

=>\(\left(c-1\right)\left(b-1\right)\left(a-1\right)< 0\)

<=> \(abc-ab-bc-ca+a+b+c-1< 0\)

<=> \(abc-ab-bc-ca+2-1< 0\)(do a+b+c=2)

đpcm

8 tháng 8 2017

BĐT tam giác:a<b+c>>>a^2<ab+ac

Tương tự,b^2<ba+bc,c^2<ca+cb

>>>>a^2+b^2+c^2<2(ab+bc+ca)(đpcm)

8 tháng 8 2017

Theo bđt tam giác có:

\(\hept{\begin{cases}a< b+c\Rightarrow a^2< ab+ac\\b< a+c\Rightarrow b^2< ab+bc\\c< a+b\Rightarrow c^2< ac+bc\end{cases}}\)\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)

19 tháng 7 2016

bài 28

\(P=\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)

=>\(P=\frac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-c-b\right)\left(a-c+b\right)}\)

=>\(P=1\)

19 tháng 7 2016

Bài 30 phải là xy+y+x=3.

Ta có: xy+y+x=3 => (x+1)(y+1)=4(1)

            yz+y+z=8 => (y+1)(z+1)=9(2)

           zx+x+z=15 => (x+1)(z+1)=16(3)

Nhân (1), (2) và (3) theo vế, ta có:

           [(x+1)(y+1)(z+1)]2=576

     =>  (x+1)(y+1)(z+1)=24(I) hoặc (x+1)(y+1)(z+1)=-24(II)

Lần lượt thay (1),(2),(3) vào (I),(II), tính x,y,z.

Kết quả: P=43/6 hoặc P=-79/6