Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a;b;c là 3 cạnh của tam giác => a; b; c dương
Với a; b dương ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) => a + b \(\ge\) 2. \(\sqrt{ab}\)
Tương tự, b + c \(\ge\) 2.\(\sqrt{bc}\); c + a \(\ge\)2. \(\sqrt{ca}\)
=> (a + b).(b+c).(c+a) \(\ge\)8. \(\sqrt{ab}\).\(\sqrt{bc}\).\(\sqrt{ca}\) = 8.abc
Dấu = xảy ra khi a = b = c
=> tam giác có 3 cạnh là a; b; c là tam giác đều
BĐT\(\Leftrightarrow\dfrac{a}{-a+b+c}+\dfrac{b}{a-b+c}+\dfrac{c}{a+b-c}\ge3\)
Áp dụng BĐT Svac-xơ, ta có:
\(\dfrac{a^2}{-a^2+ab+ac}+\dfrac{b^2}{ab-b^2+bc}+\dfrac{c^2}{ac+bc-c^2}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)
Ta có: \(a,b,c\) là 3 cạnh của 1 tam giác nên:
\(a\left(b+c\right)>a^2\). Tương tự và cộng theo vế, ta có:
\(2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)>0\)
Ta sẽ chứng minh \(\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\ge3\left(1\right)\)
Thật vậy, \(BĐT\left(1\right)\Leftrightarrow3\left(a^2+b^2+c^2\right)+\left(a+b+c\right)^2\ge6\left(ab+bc+ca\right)\), đúng
Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
Cách 2:
Đặt \(\left\{{}\begin{matrix}-a+b+c=x\\a-b+c=y\\a+b-c=z\end{matrix}\right.\) với \(x,y,z>0\)
Khi đó ta có \(a=\dfrac{y+z}{2};b=\dfrac{x+z}{2};c=\dfrac{x+y}{2}\)
BĐT cần chứng minh trở thành:
\(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\ge6\), đúng theo bđt Cauchy
Đẳng thức xảy ra khi và chỉ khi \(x=y=z\Leftrightarrow a=b=c\)
Có anh bảo e bình phương nên e cũng bình phương thử xem ạ:3 ( Hình như cái này là BĐT Mincốpski )
\(BĐT\Leftrightarrow a^2+b^2+c^2+d^2+\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+b\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2ac+2bd\)
\(\Leftrightarrow4\left(a^2+b^2\right)\left(c^2+d^2\right)\ge4a^2c^2+8abcd+4b^2d^2\)
\(\Leftrightarrow4a^2d^2-8abcd+4b^2c^2\ge0\)
Đến đây bí rồi:((((((
- Chứng minh \(\sqrt{p}< \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\left(1\right)\)
Ta biến đổi tương đương : \(\left(1\right)\Leftrightarrow p< \left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\)
\(\Leftrightarrow p< 3p-\left(a+b+c\right)+2\sqrt{p-a}.\sqrt{p-b}+2\sqrt{p-b}.\sqrt{p-c}+2\sqrt{p-c}.\sqrt{p-a}\)
\(\Leftrightarrow\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}>0\) (luôn đúng)
- Chứng minh \(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)
Áp dụng bđt Bunhiacopxki, ta có \(\left(1.\sqrt{p-a}+1.\sqrt{p-b}+1.\sqrt{p-c}\right)^2\le\left(1^2+1^2+1^2\right)\left(3p-a-b-c\right)\)
\(\Leftrightarrow\left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\le3p\Rightarrow\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)
Dấu "=" xảy ra khi a = b = c => Tam giác ABC là tam giác đều
\(\Leftrightarrow2\left(p-a\right).2\left(p-b\right).2\left(p-c\right)\le abc\)
\(\Leftrightarrow\left(2p-2a\right)\left(2p-2b\right)\left(2p-2c\right)\le abc\)
\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)
Đặt \(a+b-c=x;\text{ }b+c-a=y;\text{ }c+a-b=z\)
Thì \(a=\frac{x+z}{2};\text{ }b=\frac{y+x}{2};\text{ }c=\frac{z+y}{2}\)
Nên cần chứng minh:
\(xyz\le\frac{1}{8}\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Điều này là hiển nhiên khi ta áp dụng bđt Côsi cho VP.
Vậy ta có đpcm.
sorry, em mới học lớp 6 thui à