K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2015

\(\Leftrightarrow2\left(p-a\right).2\left(p-b\right).2\left(p-c\right)\le abc\)

\(\Leftrightarrow\left(2p-2a\right)\left(2p-2b\right)\left(2p-2c\right)\le abc\)

\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)

Đặt \(a+b-c=x;\text{ }b+c-a=y;\text{ }c+a-b=z\)

Thì \(a=\frac{x+z}{2};\text{ }b=\frac{y+x}{2};\text{ }c=\frac{z+y}{2}\)

Nên cần chứng minh: 

\(xyz\le\frac{1}{8}\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Điều này là hiển nhiên khi ta áp dụng bđt Côsi cho VP.

Vậy ta có đpcm.

20 tháng 11 2015

sorry, em mới học lớp 6 thui à

14 tháng 10 2016
  • Chứng minh \(\sqrt{p}< \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\left(1\right)\)

Ta biến đổi tương đương : \(\left(1\right)\Leftrightarrow p< \left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\)

\(\Leftrightarrow p< 3p-\left(a+b+c\right)+2\sqrt{p-a}.\sqrt{p-b}+2\sqrt{p-b}.\sqrt{p-c}+2\sqrt{p-c}.\sqrt{p-a}\)

\(\Leftrightarrow\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}>0\) (luôn đúng)

  • Chứng minh \(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Áp dụng bđt Bunhiacopxki, ta có \(\left(1.\sqrt{p-a}+1.\sqrt{p-b}+1.\sqrt{p-c}\right)^2\le\left(1^2+1^2+1^2\right)\left(3p-a-b-c\right)\)

\(\Leftrightarrow\left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\le3p\Rightarrow\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Dấu "=" xảy ra khi a = b = c => Tam giác ABC là tam giác đều

BĐT\(\Leftrightarrow\dfrac{a}{-a+b+c}+\dfrac{b}{a-b+c}+\dfrac{c}{a+b-c}\ge3\)

Áp dụng BĐT Svac-xơ, ta có:

\(\dfrac{a^2}{-a^2+ab+ac}+\dfrac{b^2}{ab-b^2+bc}+\dfrac{c^2}{ac+bc-c^2}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)

Ta có: \(a,b,c\) là 3 cạnh của 1 tam giác nên:

\(a\left(b+c\right)>a^2\). Tương tự và cộng theo vế, ta có:

\(2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)>0\)

Ta sẽ chứng minh \(\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\ge3\left(1\right)\)

Thật vậy, \(BĐT\left(1\right)\Leftrightarrow3\left(a^2+b^2+c^2\right)+\left(a+b+c\right)^2\ge6\left(ab+bc+ca\right)\), đúng

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Cách 2:

Đặt \(\left\{{}\begin{matrix}-a+b+c=x\\a-b+c=y\\a+b-c=z\end{matrix}\right.\) với \(x,y,z>0\)

Khi đó ta có \(a=\dfrac{y+z}{2};b=\dfrac{x+z}{2};c=\dfrac{x+y}{2}\)

BĐT cần chứng minh trở thành:

\(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\ge6\), đúng theo bđt Cauchy

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\Leftrightarrow a=b=c\)