Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)
\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)
\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=2(\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2})+\frac{1}{2(ab+bc+ac)}\\
\geq 2.\frac{9}{2(ab+bc+ac)+a^2+b^2+c^2}+\frac{1}{2(ab+bc+ac)}\\
=\frac{18}{(a+b+c)^2}+\frac{1}{2(ab+bc+ac)}\\
=18+\frac{1}{2(ab+bc+ac)}\)
Áp dụng BĐT AM-GM:
$2(ab+bc+ac)\leq 2.\frac{(a+b+c)^2}{3}=\frac{2}{3}$
$\Rightarrow \frac{1}{2(ab+bc+ac)}\geq \frac{3}{2}$
$\Rightarrow P\geq 18+\frac{3}{2}=\frac{39}{2}$
Vậậy $P_{\min}=\frac{39}{2}$ khi $a=b=c=\frac{1}{3}$
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\Rightarrow x+y+z=3\)
\(K=\dfrac{z^3}{x^2+z^2}+\dfrac{x^3}{x^2+y^2}+\dfrac{y^3}{y^2+z^2}\)
Ta chứng minh BĐT phụ sau: \(\dfrac{x^3}{x^2+y^2}\ge\dfrac{2x-y}{2}\)
Thật vậy, BĐT tương đương:
\(2x^3\ge2x^3-x^2y+2xy^2-y^3\)
\(\Leftrightarrow y\left(x-y\right)^2\ge0\) (đúng)
Tương tự: \(\dfrac{y^3}{y^2+z^2}\ge\dfrac{2y-z}{2}\) ; \(\dfrac{z^3}{z^2+x^2}\ge\dfrac{2z-x}{2}\)
Cộng vế với vế:
\(K\ge\dfrac{x+y+z}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=\dfrac{1}{3}\)
Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x,y,z\right)\)
thi \(P= \Sigma \frac{z^2}{x+y} \geq \frac{x+y+z}{2} \) (1)
Mat khac co \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (2)
Tu (1) va (2) suy ra \(P\ge\frac{3}{2}\).Dau = xay ra khi \(a=b=c=1\)
\(P=\dfrac{9}{ab+bc+ca}+\dfrac{2}{a^2+b^2+c^2}\)
\(=2\left[\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}\right]+\dfrac{5}{ab+bc+ca}\)
\(\ge2.\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{5}{ab+bc+ca}\)
\(=\dfrac{18}{1}+\dfrac{5}{ab+bc+ca}\ge18+5.\dfrac{3}{\left(a+b+c\right)^2}=18+15=33\)
Đẳng thức xảy ra khi a=b=c=1/3.
Vậy GTNN của P là 33.
\(P\ge3\sqrt[3]{\dfrac{abc\left(a^2+1\right)^2\left(b^2+1\right)^2\left(c^2+1\right)^2}{a^2b^2c^2\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}}=3\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{abc}}\)
\(P\ge3\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{\left(\dfrac{a+b+c}{3}\right)^3}}=9\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{\left(a+b+c\right)^3}}\ge9\sqrt[3]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{2\left(a+b+c\right)^2}}\)
Theo nguyên lý Dirichlet, trong 3 số \(a^2;b^2;c^2\) luôn có ít nhất 2 số cùng phía so với \(\dfrac{4}{9}\)
Không mất tính tổng quát, giả sử đó là \(a^2;b^2\)
\(\Rightarrow\left(a^2-\dfrac{4}{9}\right)\left(b^2-\dfrac{4}{9}\right)\ge0\)
\(\Leftrightarrow a^2b^2+\dfrac{16}{81}\ge\dfrac{4}{9}a^2+\dfrac{4}{9}b^2\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\dfrac{13}{9}a^2+\dfrac{13}{9}b^2+\dfrac{65}{81}\)
\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\ge\dfrac{13}{9}\left(a^2+b^2+\dfrac{5}{9}\right)\)
\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{13}{9}\left(a^2+b^2+\dfrac{5}{9}\right)\left(c^2+1\right)\)
\(=\dfrac{13}{9}\left(a^2+b^2+\dfrac{4}{9}+\dfrac{1}{9}\right)\left(\dfrac{4}{9}+\dfrac{4}{9}+c^2+\dfrac{1}{9}\right)\)
\(\ge\dfrac{13}{9}\left(\dfrac{2}{3}a+\dfrac{2}{3}b+\dfrac{2}{3}c+\dfrac{1}{9}\right)^2\)
\(\Rightarrow P\ge9\sqrt[3]{\dfrac{\dfrac{13}{9}\left(\dfrac{2}{3}\left(a+b+c\right)+\dfrac{1}{9}\right)^2}{2\left(a+b+c\right)^2}}=9\sqrt[3]{\dfrac{13}{18}\left(\dfrac{2}{3}+\dfrac{1}{9\left(a+b+c\right)}\right)^2}\)
\(P\ge9\sqrt[3]{\dfrac{13}{18}\left(\dfrac{2}{3}+\dfrac{1}{9.2}\right)^2}=\dfrac{13}{2}\)
\(P_{min}=\dfrac{13}{2}\) khi \(a=b=c=\dfrac{2}{3}\)
Thầy cho em hỏi cơ sở để ta nghĩ ra dòng
\(\left(a^2-\dfrac{4}{9}\right)\left(b^2-\dfrac{4}{9}\right)\ge0\) này là gì ạ?
Theo cá nhân em thấy cách giải này hay và dễ hiểu, và có lẽ cũng dựa vào điểm rơi nhưng hình như lời giải chưa tự nhiên lắm thì phải ạ. Thầy có cách nào nữa không thầy? Em cảm ơn ạ.