Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay
Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)
\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
ta có :\(a^2-ab+b^2=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\dfrac{3}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)(theo BĐT AM-GM)
\(\Rightarrow P\ge\sum\dfrac{a+b}{2\sqrt{ab+1}}\)
ÁP dụng BĐT AM-GM:
\(\dfrac{a+b}{2\sqrt{ab+1}}+\dfrac{b+c}{2\sqrt{bc+1}}+\dfrac{c+a}{2\sqrt{ca+1}}\ge3\sqrt[3]{\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8\sqrt{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}}}=\dfrac{3}{2}.\dfrac{1}{\sqrt[3]{\sqrt{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}}}\)
Mà \(\sqrt[3]{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}\le\dfrac{1}{3}\left(ab+bc+ca+3\right)\)
\(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2\sqrt{\left(ab+bc+ca+3\right)}}\)(*)
ta liên tưởng đến BĐT phụ:\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)
Cm: phân tích :\(VT=xy\left(x+y\right)+yz\left(y+z\right)+zx\left(x+z\right)+2xyz\)
\(=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)+3xyz-xyz\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)-xyz\)
mà \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)
nên \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\left(x+y+z\right)\left(xy+yz+xz\right)-\dfrac{1}{9}\left(x+y+z\right)\left(xy+yz+xz\right)=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
Áp dụng:
\(1=\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
mặt khác,theo AM-GM,dễ dàng chứng minh được \(a+b+c\ge\dfrac{3}{2}\)
nên \(1\ge\dfrac{8}{9}.\dfrac{3}{2}\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca\le\dfrac{3}{4}\)
từ (*)\(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2\sqrt{\dfrac{3}{4}+3}}=\dfrac{3}{\sqrt{5}}\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{2}\)
Lời giải:
Do \(ab+bc+ac=1\) nên:
\(a^2+1=a^2+ab+bc+ac=(a+b)(a+c)\)
\(b^2+1=b^2+ab+bc+ac=(b+a)(b+c)\)
\(c^2+1=c^2+ab+bc+ac=(c+a)(c+b)\)
Do đó:
\(A=a\sqrt{\frac{(b^2+1)(c^2+1)}{a^2+1}}+b\sqrt{\frac{(a^2+1)(c^2+1)}{b^2+1}}+c\sqrt{\frac{(b^2+1)(a^2+1)}{c^2+1}}\)
\(=a\sqrt{\frac{(b+c)(b+a)(c+a)(c+b)}{(a+b)(a+c)}}+b\sqrt{\frac{(a+b)(a+c)(c+a)(c+b)}{(b+a)(b+c)}}+c\sqrt{\frac{(b+a)(b+c)(a+b)(a+c)}{(c+a)(c+b)}}\)
\(=a(b+c)+b(a+c)+c(a+b)=2(ab+bc+ac)=2\)
Vậy \(A=2\)
Xét biểu thức \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)
\(=\frac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(abc+ab+bc+ca\right)+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{4+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)(Do \(ab+bc+ca+abc=4\)theo giả thiết)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}=1\)(***)
Với x,y dương ta có 2 bất đẳng thức phụ sau:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(*)
\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(**)
Áp dụng (*) và (**), ta có:
\(\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\frac{1}{a+b+4}=\frac{1}{\left(a+2\right)+\left(b+2\right)}\)
\(\le\frac{1}{4}\left(\frac{1}{a+2}+\frac{1}{b+2}\right)\)(1)
Tương tự ta có: \(\frac{1}{\sqrt{2\left(b^2+c^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{b+2}+\frac{1}{c+2}\right)\)(2)
\(\frac{1}{\sqrt{2\left(c^2+a^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{c+2}+\frac{1}{a+2}\right)\)(3)
Cộng từng vế của các bất đẳng thức (1), (2), (3), ta được:
\(P\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)(theo (***))
Đẳng thức xảy ra khi \(a=b=c\)
\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)
\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)
∑ cái này nghĩa là gì ạ