Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
Câu hỏi của Trần Thanh Phương - Toán lớp 9 | Học trực tuyến
Tự lực cánh sinh thôi...
c/
Nếu dấu là trừ:
BĐT cần chứng minh tương đương:
\(\left(a+b+c-\frac{2}{k}abc\right)^2\le2k\)
Ta có:
\(VT=\left[\left(a+b\right).1+c\left(1-\frac{2}{k}ab\right)\right]^2\)
\(VT\le\left[\left(a+b\right)^2+c^2\right]\left[1+\left(1-\frac{2}{k}ab\right)^2\right]\)
\(VT\le\left(k+2ab\right)\left(2-\frac{4}{k}ab+\frac{4a^2b^2}{k^2}\right)\)
\(VT\le2k-\frac{4}{k}a^2b^2+\frac{8}{k^2}\left(ab\right)^3\)
Do đó ta chỉ cần chứng minh: \(2k-\frac{4}{k}\left(ab\right)^2+\frac{8}{k^2}\left(ab\right)^3\le2k\)
\(\Leftrightarrow\frac{1}{k}\left(ab\right)^2-\frac{2}{k^2}\left(ab\right)^3\ge0\)
\(\Leftrightarrow\frac{1}{k}\left(ab\right)^2\left(1-\frac{2ab}{k}\right)\ge0\)
Từ giả thiết \(k=a^2+b^2+c^2\ge a^2+b^2\ge2ab\Rightarrow\frac{2ab}{k}\le1\)
\(\Rightarrow1-\frac{2ab}{k}\ge0\Rightarrow\frac{1}{k}\left(ab\right)^2\left(1-\frac{2ab}{k}\right)\ge0\) (đpcm)
À ghi lộn đó bạn, bạn thay lại hệ số đúng thôi, ko ảnh hưởng gì cả vì số hạng đó được bỏ qua trong quá trình chứng minh