Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Haiz giải ra rồi
Ta có : \(VT=\Sigma\left(\frac{a^2-bc}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(\frac{2k\left(a^2-bc\right)}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(\frac{2ka^2-2kbc}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(\frac{2ka^2+k^2b^2+c^2+2ka^2-2kbc-2ka^2-k^2b^2-c^2}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(1-\frac{2kbc-2ka^2+2ka^2+k^2b^2+c^2}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(1-\frac{k^2b^2+2kbc+c^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(1-\frac{\left(kb+c\right)^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge0\)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT=\Sigma\left(1-\frac{\left(kb+c\right)^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge\Sigma\left[1-\left(\frac{k^2b^2}{k^2b^2+ka^2}+\frac{c^2}{ka^2+c^2}\right)\right]\)
\(=3-\left(\frac{k^2b^2+ka^2}{k^2b^2+ka^2}+\frac{ka^2+c^2}{ka^2+c^2}+\frac{k^2b^2+c^2}{k^2b^2+c^2}\right)=3-3=0\)( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=b=c\\k>0\end{matrix}\right.\)
Ta có: \(1-\frac{2k\left(a^2-bc\right)}{2ka^2+k^2b^2+c^2}=\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}\)
Ta có thể viết lại bất đẳng thức thành
\(\sum\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}\le3\)
Sử dụng BĐT Cauchy-Schwarz, ta có:
\(\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=\frac{\left(kb+c\right)^2}{k\left(a^2+kb^2\right)+c^2+ka^2}\le\frac{kb^2}{a^2+kb^2}+\frac{c^2}{c^2+kc^2}\)
Tương tự rồi cộng lại, ta có điều phải chứng minh. Đẳng thức xảy ra khi \(a=b=c\), hoặc \(a=\frac{b}{k}=\frac{c}{k^2}\), hoặc \(b=\frac{c}{k}=\frac{a}{k^2}\), hoặc \(c=\frac{a}{k}=\frac{b}{k^{^2}}\)
Hoặc ta có thể làm như sau.
\(\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=\frac{kb^2}{a^2+kb^2}+\frac{c^2}{c^2+kc^2}-\frac{k\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+kc^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)
Ta có đẳng thức sau:
\(\sum\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=3-p\sum\frac{\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+ka^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)
\(\sum\frac{a^2-bc}{2ka^2+k^2b^2+c^2}=\frac{1}{2}\sum\frac{\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+ka^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)
Do đó, bất đẳng thức ban đầu tương đương với
\(\sum\frac{\left(b^2+kc^2\right)\left(a^2-bc\right)^2\left(kb-c\right)^2}{2ka^2+k^2b^2+c^2}\ge0\)
\(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{2b^2+c^2+a^2}+\frac{c^2-ab}{2c^2+a^2+b^2}\)
= \(\frac{1}{2}\left(\frac{2a^2-2bc}{2a^2+b^2+c^2}+\frac{2b^2-2ca}{2b^2+c^2+a^2}+\frac{2c^2-2ab}{2c^2+a^2+b^2}\right)\)
= \(\frac{1}{2}\left(\frac{2a^2-2bc}{2a^2+b^2+c^2}-1+\frac{2b^2-2ca}{2b^2+c^2+a^2}-1+\frac{2c^2-2ab}{2c^2+a^2+b^2}-1\right)+\frac{3}{2}\)
= \(-\frac{1}{2}\left(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right)+\frac{3}{2}\)
NHận xét:
\(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}\)\(=\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)
Tương tự: \(\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}\le\text{}\text{}\frac{a^2}{b^2+a^2}+\frac{c^2}{b^2+c^2}\)
\(\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\le\text{}\text{}\frac{a^2}{c^2+a^2}+\frac{b^2}{b^2+c^2}\)
=> \(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\le3\)
=> \(-\frac{1}{2}\left(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right)+\frac{3}{2}\ge-\frac{1}{2}.3+\frac{3}{2}=0\)
=> \(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{2b^2+c^2+a^2}+\frac{c^2-ab}{2c^2+a^2+b^2}\ge0\)
Dấu "=" xảy ra <=> a = b = c
Lời giải:
$a^2+b^2+c^2+6=2(a+2b+c)$
$\Leftrightarrow (a^2-2a+1)+(b^2-4b+4)+(c^2-2c+1)=0$
$\Leftrightarrow (a-1)^2+(b-2)^2+(c-1)^2=0$
Vì $(a-1)^2\geq 0; (b-2)^2\geq 0; (c-1)^2\geq 0$ với mọi $a,b,c\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:
$(a-1)^2=(b-2)^2=(c-1)^2=0$
$\Rightarrow a=c=1; b=2$
$\Rightarrow K=3$
Đáp án C.
\(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca\right)^2}{2a^2+bc}\le\left(a+b+c\right)^2\)
Ta có: \(\frac{\left(ab+bc+ca\right)^2}{2a^2+bc}\le\frac{\left(ab+ca\right)^2}{2a^2}+\frac{\left(bc\right)^2}{bc}=\frac{\left(b+c\right)^2}{2}+bc\)
Tương tự rồi cộng lại ta thu được:
\(L.H.S\le\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{2}+ab+bc+ca\)
\(=\frac{2\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)}{2}+ab+bc+ca\)\(=\left(a+b+c\right)^2\)
P/s: Nhìn đơn giản chứ nó là bao nhiêu ngày suy nghĩ đấy ạ:( Chả biết đúng hay sai nữa:v
a/ \(\frac{4bc-a^2}{bc+2a^2}.\frac{4ab-c^2}{ab+2c^2}.\frac{4ac-b^2}{ac+2b^2}\)
\(=\frac{4bc-\left(b+c\right)^2}{bc+2\left(b+c\right)^2}.\frac{4\left(-b-c\right)b-c^2}{\left(-b-c\right)b+2c^2}.\frac{4\left(-b-c\right)c-b^2}{\left(-b-c\right)c+2b^2}\)
\(=\frac{-\left(b-c\right)^2}{\left(c+2b\right)\left(b+2c\right)}.\frac{-\left(c+2b\right)^2}{-\left(b-c\right)\left(b+2c\right)}.\frac{-\left(b+2c\right)^2}{\left(b-c\right)\left(c+2b\right)}=1\)
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
Câu hỏi của Trần Thanh Phương - Toán lớp 9 | Học trực tuyến
Tự lực cánh sinh thôi...
linh ta linh tinh