K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

Ta có \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

        \(=abc-1-\left(ab+bc+ac\right)+\left(a+b+c\right)\)

        \(=-1-1-1+3=0\)

=> 1 trong 3 số a,b,c có 1 số bằng 1

Nếu \(a=b=c=1\)=> không thỏa mãn \(abc=-1\)

=> có đúng 1 số trong 3 số a,b,c bằng 1

Vậy trong các số a,b,c có đúng 1 số bằng 1

Các số ab=a.b hay ab=ab;bc=b.c hay bc=bc;ca=a.c hay ca=ca

Và abc=a.b.c hay abc=abc

Trả lời nhanh mk giúp cho

Chúc bn học tốt

31 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}\)

                                                                  \(=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\hept{\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)=> a = b = c (đpcm)

31 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow\begin{cases}a=b\\b=c\\c=a\end{cases}\)

=> a = b = c (đpcm)

26 tháng 12 2023

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)

\(\Rightarrow a=b=c=\dfrac{1}{3}\)

\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)

21 tháng 6 2017

Ta có :

\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{abc}{aabc+abc+ab}\)

\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{1}{a+1+ab}\)

\(A=\dfrac{a+ab+1}{ab+a+1}\)

\(\Rightarrow A=1\left(đpcm\right)\)

20 tháng 6 2017

kiểm tra lại đề đi bạn