K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

\(A=3+3^2+3^3+...+3^{100}\)

\(3A=3^2+3^3+3^4+...+3^{101}\)

->\(3A-A=3^{101}-3\)

->2A+3=3101

->n=101

3A = 3 + 3^ 2 + 3^3 + ... + 3 ^ 100 + 3 ^ 101

A =1 + 3 + 3 ^ 2 + .. + 3 ^ 100

3A - A = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 100 + 3 ^ 101 - 1 - 3 - 3 ^ 2 - ... - 3^ 100

= 3 ^ 101 - 1

2A = 3 ^ 101 - 1

2A + 3 = 3 ^ 101 - 1 + 3 = 3 ^ 101 + 2 khác 3 ^ n

=> ko có n thỏa mãn

23 tháng 6 2016

3A = 3 + 3^ 2 + 3^3 + ... + 3 ^ 100 + 3 ^ 101

A =1 + 3 + 3 ^ 2 + .. + 3 ^ 100

3A - A = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 100 + 3 ^ 101 - 1 - 3 - 3 ^ 2 - ... - 3^ 100

= 3 ^ 101 - 1

2A = 3 ^ 101 - 1

2A + 3 = 3 ^ 101 - 1 + 3 = 3 ^ 101 + 2 khác 3 ^ n

=> ko có n thỏa mãn

NM
21 tháng 12 2020

ta có 

\(A=3+3^2+..+3^{100}\)

\(\Rightarrow3A=3^2+3^3+..+3^{100}+3^{101}=\left(3+3^2+..+3^{100}\right)+3^{101}-3\)

hay \(3A=A+3^{101}-3\Leftrightarrow2A+3=3^{101}\)

vậy n=101

22 tháng 1 2016

Ta có: 3A=32+33+...+3101

3A-A=2A=(32+33+...+3101)-(3+32+...+3100)

2A=3101-3

A=\(\frac{3^{101}-3}{2}\)

=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3

            =(3101-3)+3

           =3101

Mà 2A+3=3n

=>3101=3n

=>n=101

22 tháng 1 2016

A=3+32+33+...+3100

2A=(3+32+33+...+3100)x2

2A=32+33+34...+3101

2A-A=3101-3

mà 3n=2A+3=3101-3+3=3101

suy ra n=101

26 tháng 11 2015

A = 3 + 32 + 33 + 3+ . . . + 3100

3A = 32 + 33 + 34 + . . . + 3101

=> 3A - A = 3101 - 3

           2A = 3101 - 3

=> 2A + 3 = 3101

Mà : 2A + 3 = 3n

=> n = 101

Vậy : n = 101

27 tháng 11 2018

Bài 2:

a)Ta có : \(n+3=\left(n-9\right)+12\)

\(\Rightarrow n+3⋮n-9\Leftrightarrow12⋮n-9\) ( vì n - 9 chia hết cho n - 9 )

                             \(\Leftrightarrow n-9\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Mà : \(n\in N\) nên \(n-9=\pm1;\pm2;\pm3;\pm4;\pm6;12\)

Ta có bảng : 

n - 9-6-4-3-2-11234612
n35678101112131521

Vậy \(n=3;5;6;7;8;10;11;12;13;15;21\)

b) Bạn làm tương tự câu a

có A=3+3^2+3^3+..+3^100

3A=3.3+3^2.3+3^3.3+..+3^100.3

3A=3^2+3^3+3^4+..+3^101
⇒2A=(3^2+3^3+3^4+..+3^101)-(3+3^2+3^3+..+3^100)

2A=3^101-3

LẤY 3^101-3+3=3^n

3^101=3^n

⇒n=101

15 tháng 6 2021

Ta có A = 3 + 3^2 + 3^3 + ... +3^{100}A=3+32+33+...+3100 (1)

3A = 3^2 + 3^3 + ... +3^{100} + 3^{101}3A=32+33+...+3100+3101 (2)

Lấy (2) trừ (1) được 2A = 3^{101} - 32A=31013.

Do đó, 2A + 3 = 3^{101}2A+3=3101

Mà theo đề bài 2A + 3 = 3^n2A+3=3n.

Vậy n = 101n=101.

15 tháng 8 2015

=>3A=32+32+…+3101

=>3A-A=32+33+…+3101-3-32-…-3100

=>2A=3101-3

=>2A+3=3101=3N

=>N=101

Vậy N=101

15 tháng 8 2015

3A = \(3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)\)- \(\left(3+3^2+3^3+..+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Rightarrow2A+3=3^{101}\)
Vậy n = 101

1 tháng 4 2022

3/4 +3 =