Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
Ta có: A=3+32+33+...+3100
=> 3A=32+33+34+...+3100+3101
=>3A-A=32+33+34+...+3100+3101-(3+32+33+...+3100)
=> 2A=3101-3
=>2A+3=3101
Lại có: 2A+3=3n
=> 2A+3=3101=3n
=> 3101=3n
=> 101=n
Vậy n=101
a=3+32+33+....+3100
=>3a=32+33+....+3101
=>3a-a=32+33+....+3101 -(3+32+33+....+3100)
=>2a=32+33+....+3101-3-32-33-...-3100
=>2a=3101-3
=>2a+3=3101
mà theo đề 2a+3=3n
=>n=101
vậy n=101
\(A=3+3^2+3^3+...+3^{100}\)
\(3A=3^2+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(2A=3^{101}-3\)
\(2A+3=3^{101}\)
Suy ra \(n=101\).
A = 3 + 3^2 + 3^3 + ... + 3^100
3A = 3^2 + 3^3 + 3^4 + ... + 3^101
3A - A = 3^101 - 3 = 2A
A = (3^101 - 3) : 2
A=3+3^2+3^3+..........+3^99+3^100
3A=3^2+3^3+...............+3^100+3^101
=> 3A-A= (3^2+3^3+......+3^100+3^101) - (3+3^2+3^3+........+3^99+3^100)
=> 2A= 3^101 - 3
=>2A+3=3^101
=>3^n=3^101
=> n=101
Ta có : A = 3 + 32 + 33 + ..... + 3100
=> 3A = 32 + 33 + 34 + ..... + 3101
=> 3A - A = 3101 - 3
=> 2A = 3101 - 3
=> 2A + 3 = 3101
=> x = 101
Vậy x = 101 .
\(A=3+3^2+3^3+........+3^{100}\)
\(3A=3^2+3^3+.......+3^{101}\)
\(3A-A=\left(3^2+3^3+........+3^{101}\right)-\left(3+3^2+3^3+........+3^{100}\right)\)
\(3A-A=3^2+3^3+........+3^{101}-3-3^2-3^3-........-3^{100}\)
=> \(2A=3^{101}-3\)
Sau đó làm tiếp
A = 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = 3101 + 3100 - 3100 + 399 - 399 + ... + 34 - 34 + 33 - 33 + 32 - 32 - 3
(3 - 1)A = 3101 - 3
2A = 3101 - 3
\(\Rightarrow A=\frac{3^{101}-3}{2}\)
Ta có:
2A + 3 = 3n
2 . \(\frac{3^{101}-3}{2}\) + 3 = 3n
3101 - 3 + 3 = 3n
3101 = 3n
Vậy n = 101
A = 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = 3101 - 3
2A = 3101 - 3
Ta có:
2A + 3 = 3n
3101 - 3 +3 = 3n
3101 = 3n
=> n = 101
Vậy n = 101
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\)
Mà \(2A+3=3^n\)
\(\Rightarrow3^{101}-3+3=3^n\)
\(\Rightarrow3^n=3^{101}\)
\(\Rightarrow n=101\)
Vậy n = 101
A = 3 + 32 + 33 + ... + 3100
=> 3A= 32 + 33 + ... + 3101
=> 3A-A=( 32 + 33 + ... + 3101)-(3 + 32 + 33 + ... + 3100)
=> 2A=3101-3
Mà : 2A+3=3n
=> \(3^{101}-3+3=3^n\)
\(\Rightarrow3^{101}=3^n\)
=> n=101