K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

Ta có : A = 3 + 32 + 33 + ..... + 3100 

=> 3A = 32 + 33 + 34 + ..... + 3101 

=> 3A - A = 3101 - 3 

=> 2A = 3101 - 3 

=> 2A + 3 = 3101

=> x = 101

Vậy x = 101 . 

21 tháng 9 2017

\(A=3+3^2+3^3+........+3^{100}\)

\(3A=3^2+3^3+.......+3^{101}\)

\(3A-A=\left(3^2+3^3+........+3^{101}\right)-\left(3+3^2+3^3+........+3^{100}\right)\)

\(3A-A=3^2+3^3+........+3^{101}-3-3^2-3^3-........-3^{100}\)

=> \(2A=3^{101}-3\)

Sau đó làm tiếp

24 tháng 9 2015

A = 3 + 32 + 33 + ... + 3100

3A = 32 + 33 + 34 + ... + 3101

3A - A = 3101 + 3100 - 3100 + 399 - 399 + ... + 34 - 34 + 33 - 33 + 32 - 32 - 3

(3 - 1)A = 3101 - 3

2A = 3101 - 3

\(\Rightarrow A=\frac{3^{101}-3}{2}\)

Ta có:

2A + 3 = 3n

2 . \(\frac{3^{101}-3}{2}\) + 3 = 3n

3101 - 3 + 3        = 3n

3101                   = 3n

Vậy n = 101

1 tháng 4 2022

3/4 +3 =

6 tháng 6 2015

 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
 

6 tháng 6 2015

Ta có: A=3+32+33+...+3100

=>    3A=32+33+34+...+3100+3101

=>3A-A=32+33+34+...+3100+3101-(3+32+33+...+3100)

=>    2A=3101-3

=>2A+3=3101

Lại có: 2A+3=3n

=>        2A+3=3101=3n

=>           3101=3n

=>           101=n

Vậy n=101

1 tháng 7 2015

a=3+32+33+....+3100

=>3a=32+33+....+3101

=>3a-a=32+33+....+3101 -(3+32+33+....+3100)

=>2a=32+33+....+3101-3-32-33-...-3100

=>2a=3101-3

=>2a+3=3101

mà theo đề 2a+3=3n

=>n=101

vậy n=101

1 tháng 7 2015

a=3+32+...+3100

=>3a=32+33+...+3101=> 3a-a=2a=(32+33+...+3101)-(3+32+...+3100)=3101-3

\(\Rightarrow a=\frac{3^{101}-3}{2}\)

=>2a+3=\(2\times\frac{3^{101}-3}{2}+3=\left(3^{101}-3\right)+3=3^{101}-3+3=3^{101}-\left(3-3\right)=3^{101}-0=3^{101}\)

DD
10 tháng 12 2021

\(A=3+3^2+3^3+...+3^{100}\)

\(3A=3^2+3^3+3^4+...+3^{101}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(2A=3^{101}-3\)

\(2A+3=3^{101}\)

Suy ra \(n=101\).

19 tháng 8 2016

Ta có:

\(A=3+3^2+3^3+...+3^{2009}\)

\(3A=3^2+3^3+3^4+...+3^{2010}\)

\(3A-A=2A=\left(3^2+3^3+3^4+...+3^{2010}\right)-\left(3+3^2+3^3+...+3^{2009}\right)\)

\(2A=3^{2010}-3\)

  \(A=\frac{3^{2010}-3}{2}\)

Ta có:

2A + 3 = 32010 - 3 + 3 = 32010 

=> n = 2010

Vậy n = 2010

ỦNG HỘ NHA

19 tháng 8 2016

Bạn nào có cách làm mình mới tích.

15 tháng 11 2015

A = \(3+3^2+3^3+...+\)\(3^{100}\)       (1)

3A = \(3^2+3^3+3^4+...+3^{101}\)    (2)

 lấy (2) trừ (1) ta được : 

2A= \(3^{101}-3\)

 ta có : 2A+3 = \(3^n\)

         => \(3^{101}-3+3=3^n\)

               \(3^{101}=3^n\)

 => \(n=101\)