K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

Làm giúp mik nha mik đang cần gấp

25 tháng 8 2017

có câu này là câu tương tự nè bạn tự tham khảo nha,mình đang vội

https://olm.vn/hoi-dap/question/720924.html

DD
2 tháng 6 2021

a) Chữ số tận cùng của \(21\)là \(1\)nên chữ số tận cùng của \(21^x\)với \(x\)là số tự nhiên là \(1\).

Chữ số tận cùng của tổng \(M\)là chữ số tận cùng của \(1+1+1+...+1+1=10\)là chữ số \(0\).

Do đó \(M\)chia hết cho \(10\)nên \(M\)chia hết cho \(2\)và \(5\).

b) \(Q=6+6^2+6^3+...+6^{99}\)

\(Q=\left(6+6^2+6^3\right)+\left(6^4+6^5+6^6\right)+...+\left(6^{97}+6^{98}+6^{99}\right)\)

\(Q=6\left(1+6+6^2\right)+6^4\left(1+6+6^2\right)+...+6^{97}\left(1+6+6^2\right)\)

\(Q=\left(1+6+6^2\right)\left(6+6^4+...+6^{97}\right)\)

\(Q=43\left(6+6^4+...+6^{97}\right)⋮43\).

16 tháng 10 2018

TA CÓ:6A=    1.6+6.6+6.6^2+..........+6^1000.6

            6A=    6+6^2+6^3+        +6^1000+6^1001

              A=1+6+6^2+........+6^1000

       6A-A=6^1001-1

vì 6^1001 chia hết cho 6:;1 chia 6 dư 5 suy ra A chia 6 dư 5

25 tháng 10 2018

minh nham chia A cho 7

1 tháng 12 2019

6:5 dư 1

6 mũ 2 :5 dư 1

.........................

6 mũ 2016 : 5 dư 1

Vậy số dư của A khi chia 5 là:

             1.(2016-1):1+1)

6 tháng 1 2018

1) 

Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y

=> Để 6x + 99 = 20y thì 6x là số lẻ

=> x = 0      

Thay x = 0 ta có 60 + 99 = 20y

                    =>   1  + 99 = 20y

                    =>    100     = 20y

                    => y  = 100 ; 20

                    => y =        5

Vậy x = 0, y = 5

16 tháng 3 2022

`Answer:`

2.

Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)

\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)

\(=4+3^2.13+3^{98}.13\)

\(=4+13.\left(3^2+...+3^{98}\right)\)

Vậy `M` chia `13` dư `4`

Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)

\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)

\(=1+3.40+3^5.40+...+3^{97}.40\)

\(=1+40.\left(3+3^5+...+3^{97}\right)\)

Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)

Vậy `M` chia `40` dư `1`

31 tháng 10 2015

Đặt A = 21+22+23+24+....+2100

A có 100 số hạng, nhóm 3 số vào 1 nhóm ta được 99 nhóm và thừa 1 số hạng

=> A = 21 + (22+23+24)+(25+26+27)+.....+(298+299+2100)

=> A = 2 + 22(1+2+22) + 25(1+2+22) +......+ 298(1+2+22)

=> A = 2 + 22.7 + 25.7 +......+ 298.7

=> A = 2 + 7.(22 + 25 +....+ 298)

Có  7.(22 + 25 +....+ 298) chia hết cho 7

Mà 2 chia 7 dư 2

=> 2 +  7.(22 + 25 +....+ 298) chia 7 dư 2

=> A chia 7 dư 2