Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(D=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(\Rightarrow7D=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(\Rightarrow7D-D=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6D=1-\frac{1}{7^{100}}\)
\(\Rightarrow D=\left(1-\frac{1}{7^{100}}\right).\frac{1}{6}\)
Ta có:
A=1+1/3+1/32+1/33+...+1/32014
=>3A=3+1/32+1/33+1/34+...+1/32015
=>2A=2+1/32015-1/3
=>A=1+2/32015-2/3
OK!
Cho A = 1/32 + 1/33 + 1/34 + ... + 1/39
=>3A=1/3+1/32+1/33+...+1/38
=>3A-A=1/3+1/32+1/33+...+1/38-1/32-1/33-1/34-...-1/39
=>2A=1/3-1/39
=>\(A=\frac{\frac{1}{3}-\frac{1}{3^9}}{2}\)<1
Vậy A<1