K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

Đặt A , ta có :

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{999\times1000}+1\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)

\(A=2-\frac{1}{1000}\)

\(A=\frac{2000}{1000}-\frac{1}{1000}\)

\(A=\frac{1999}{1000}\)

12 tháng 8 2016

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}+1=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+1\)

\(A=1-\frac{1}{1000}+1=\frac{999}{1000}+1=\frac{1999}{1000}\)

Vậy \(A=\frac{1999}{1000}\)

22 tháng 4 2016

Giải:

Ta có:  1/1x2+1/2x3+1/3x4+...+1/999x1000+1

= 1 - 1/2 + 1/2-1/3  + 1/3-1/4 + ...+ 1/999 - 1/1000 + 1

= 1 - 1/1000 + 1

= 2 - 1/1000

= 1999/1000

Ai tích mk mk sẽ tích lại 

Ko đc Coppy

CHỉ đc viết thui nha mk cho 1 tích  

22 tháng 4 2016

1999 / 1000 nha avt173370_60by60.jpgHoàng Tử Ban Mai

12 tháng 1 2016

A = 1.2 + 2.3 + .... + 999.1000

3A = 1.2.3 + 2.3.(4-1) + .... + 999.1000.(1001 - 998)

3A = 1.2.3 + 2.3.4 - 1.2,3 +..... + 999.1000.1001 - 998.999.1000

3A = 999 . 1000 . 1001

A = 333 x 1000 x 1001 = 333 333 000

12 tháng 1 2016

3A=1x2x3+2x3x(4-1)+3x4x(5-2)+.............+999x1000x(1001-998)

3A=1x2x3+2x3x4-1x2x3+3x4x5-2x3x4+............+999x1000x1001-998x999x1000

3A=999x1000x1001

A=999x1000x1001:3

A=333333000

16 tháng 7 2015

ờ 1/2x3 nữa       

\(\frac{a}{b}=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(=\left(\frac{1}{51}+\frac{1}{100}\right)+...+\left(\frac{1}{75}+\frac{1}{76}\right)=\frac{151}{100.51}+...+\frac{151}{75.76}\)

\(=151.\left(\frac{1}{51.100}+...+\frac{1}{75.76}\right)\)

gọi \(\frac{1}{51.100}+...+\frac{1}{75.76}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}.151=\frac{151c}{d}\)

=>a chia hết cho 151

=>đpcm

 

3 tháng 8 2015

bạn li-ke cho I love U thì ai giải cho bạn nữa

15 tháng 5 2018

Ta có: A = 1 - 1/2 + 1/3 - 1/4 + ... +1/2013 - 1/2014

          A =  1 + 1/2 + 1/3 + 1/4 +... + 1/2013 + 1/2014 - 2.(1/2 + 1/4 + ... + 1/2014)

          A =  1 + 1/2 + 1/3 + 1/4 +... + 1/2013 + 1/2014 - (1 + 1/2 + 1/3 + ... + 1/1007)

          A = 1/1008 + 1/1009 + ... + 1/2014

bạn viết lại B được ko

15 tháng 5 2018

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(A=1-\frac{1}{2014}\)

\(A=\frac{2013}{2014}\)

bài B thì đề khó hiểu quá

bn ghi lại đề rồi mình giải

10 tháng 5 2016

B = 1/1x2 + 1/3x4 + ... + 1/99x100

B = 1 - 1/2 + 1/3 - 1/4 + ... + 1/99 - 1/100

B = (1 + 1/2 + 1/3 + 1/4 + ... + 1/99 + 1/100) - (2.1/2 + 2.1/4 + 2.1/6 + ... + 2.1/100)

B = (1 + 1/2 + 1/3 + 1/4 + ... + 1/99 + 1/100) - (1 + 1/2 + 1/3 + ... + 1/50)

B = 1/51 + 1/52 + 1/53 + ... + 1/100

=> tỉ số a/b = 1