Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(111...11+444...44+1\)
100cs 50cs
\(=\dfrac{1}{9}.999...99+\dfrac{4}{9}.999...99+1\)
100cs 50cs
\(=\dfrac{10^{100}-1}{9}+\dfrac{4\left(10^{50}-1\right)}{9}+1\)
\(=\dfrac{10^{100}-1+4.10^{50}-4+9}{9}\)
\(=\dfrac{10^{100}+4.10^{50}+4}{9}\)
\(=\left(\dfrac{10^{50}+2}{3}\right)^2\)
Vì \(10^{50}+2\) có tổng các chữ số là 3 nên \(\dfrac{10^{50}+2}{3}\inℕ\). Vậy ta có đpcm.
Ta dễ dàng chứng minh được công thức: \(111...1=\frac{10^n-1}{9}\)
(n số 1)
Áp dụng công thức trên ta có:
\(a+b+1=111...1.10^n+111...1+111...1.4+1\)
(n số 1) (n số 1) (n số 1)
\(=\frac{10^n-1}{9}.\left(10^n+1+4\right)+1\)
\(=\frac{10^n-1}{9}.\left(10^n+1+4+3\right)-\frac{10^n-1}{9}.3+1\)
\(=\frac{10^n-1}{9}.\left(10^n+8\right)-\frac{10^n-1}{3}+1\)
\(=111...1.3.333...36-333...3+1\)
(n số 1) (n - 1 số 3) (n số 3)
\(=333...3.333...36-333...32\)
(n số 3)(n - 1 số 3)(n - 1 số 3)
\(=333...3.333...34+333...3+333...3-333...32\)
(n số 3)(n - 1 số 3)(n số 3) (n số 3) (n - 1 số 3)
\(=333...34^2\), là số chính phương (đpcm)
(n - 1 số 3)
Ta có \(A=111111...1\)có 100 số 1
\(B=4444...4\)có 50 số 4
\(\Rightarrow\)\(A+B+1=111111...555555...56\)\(⋮2\)
\(\Rightarrow\)A+B+1 là số chính phương
Ta có:A-B=111...111111-2 x 111...111111
(100 chữ số 1) (50 chữ số 2)
=1111...1111 x (1000...0001 - 2)
(50 chữ số 1) (có 51 chữ số trong đó có 49 chữ số 0)
=1111...1111 x 9999...9999
(50 chữ số 1) (50 chữ số 9)
=1111...1111 x 9 x 1111...1111
(50 chữ số 1) (50 chữ số 1)
=(1111...1111)^2 x 3^2
=(1111...1111 x 3)^2
Vậy hiệu A-B là một số chính phương
\(ab+1=\underbrace{11....11}_{2018c/s1}.\underbrace{11....13}_{2017c/s1}+1\)
\(\Leftrightarrow ab+1=(\underbrace{11....10}_{2017c/s1}+1).(\underbrace{11....10}_{2017c/s1}+3)+1\)
\(\Leftrightarrow ab+1=\underbrace{11....10^2}_{2017c/s1}+4.\underbrace{11....10}_{2017c/s1}+3+1\)
\(\Leftrightarrow ab+1=\underbrace{11....10^2}_{2017c/s1}+4.\underbrace{11....10}_{2017c/s1}+4\)
\(\Leftrightarrow ab+1=(\underbrace{11....10}_{2017c/s1}+2)^2\) là số chính phương
Vậy...
C áp dụng hằng đẳng thức : \(x^2+2xy+y^2=\left(x+y\right)^2\)