Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\)
\(A>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)
50 phân số 1/150
\(A>50.\frac{1}{150}=\frac{1}{3}\)(1)
\(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\)
\(A< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
50 phân số 1/100
\(S< 50.\frac{1}{100}=\frac{1}{2}\)(2)
Từ (1) và (2) => \(\frac{1}{3}< A< \frac{1}{2}\)
Ta có \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\)
\(>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)(50 số hạng)
\(=50.\frac{1}{150}=\frac{1}{3}\)
=> \(A>\frac{1}{3}\)(1)
Lại có : \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)(50 Số hạng 1/100)
\(=50.\frac{1}{100}=\frac{1}{2}\)
=> \(A< \frac{1}{2}\)(2)
Từ (1) và (2) => \(\frac{1}{3}< A< \frac{1}{2}\)(đpcm)
- A = 1/101 + 1/102 + 1/103 + ... + 1/150
Ta có số hạng tử là (150 -101)/1+1=50 (hạng tử)
=>A>1/150 x 50
=>>50/150=1/3
=.> A>1/3
A = 1/101 + 1/102 + 1/103 + ... + 1/150
sai đề rồi !!!