Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt A = 1/101 + 1/101 + 1/103 +...+ 1/150
A là tổng 50 số giảm dần, và số nhỏ nhất là 1/150
Vậy nên A > 50 x 1/150
=> A > 1/3
b, ta có
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12
Ta có:
\(A=\frac{1}{101}+\frac{1}{102}+.........+\frac{1}{200}\)(có 100 phân số)
\(>\frac{1}{200}+\frac{1}{200}+........+\frac{1}{200}=\frac{1}{200}.100=\frac{100}{200}=\frac{1}{2}\)
\(\Rightarrowđpcm\)
Ta thấy mỗi số hạng của tích trên đều lớn hơn hoặc bằng \(\frac{1}{200}\)
\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}=\frac{1}{200}.100=\frac{1}{2}\)
Ta có \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\)
\(>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)(50 số hạng)
\(=50.\frac{1}{150}=\frac{1}{3}\)
=> \(A>\frac{1}{3}\)(1)
Lại có : \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)(50 Số hạng 1/100)
\(=50.\frac{1}{100}=\frac{1}{2}\)
=> \(A< \frac{1}{2}\)(2)
Từ (1) và (2) => \(\frac{1}{3}< A< \frac{1}{2}\)(đpcm)
- A = 1/101 + 1/102 + 1/103 + ... + 1/150
Ta có số hạng tử là (150 -101)/1+1=50 (hạng tử)
=>A>1/150 x 50
=>>50/150=1/3
=.> A>1/3
A = 1/101 + 1/102 + 1/103 + ... + 1/150
Tách A thành 2 nhóm A1 , A2
A1 = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)
A2 = \(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\)
\(\Rightarrow\)A = A1 + A2 > \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Vì : 1/101 > 1/300 ; 1/102 > 1/300 .... ; 1/299 >1/300 ; Do 1/101.....1/300 có 200 số
=>1/101+1/102+....+1/299+1/300 > 1/300 x 200
> 2/3
\(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\)
\(A>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)
50 phân số 1/150
\(A>50.\frac{1}{150}=\frac{1}{3}\)(1)
\(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\)
\(A< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
50 phân số 1/100
\(S< 50.\frac{1}{100}=\frac{1}{2}\)(2)
Từ (1) và (2) => \(\frac{1}{3}< A< \frac{1}{2}\)