Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) (a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
2. Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Bài 3\(x=-2002\):
a.
\(\left|x\right|=2002\)
\(x=\pm2002\)
Vậy \(x=2002\) hoặc \(x=-2002\)
b.
\(\left|x\right|=0\)
\(x=0\)
c.
\(\left|x\right|< 3\)
\(\left|x\right|\in\left\{0;1;2\right\}\)
\(x\in\left\{-2;-2;0;1;2\right\}\)
Chúc bạn học tốt
3. Tìm x biết
a. |x|=2002
=> x = 2002 hoặc -2002
b, |x|=0
=> x = 0
c.|x|<3
=> |x| = {0; 1; 2}
x = {0; 1; -1; 2; -2}
d.|x|>4 và x<-70
=> x < -70
x = {-71; -72, -73; -74; ...}
1/ \(A=\left(x+3\right)\left(x-5\right)\)
\(B=2x^2-6x=2x\left(x-3\right)\)
Để A < 0 thì \(\left[\begin{matrix}\left\{\begin{matrix}x+3>0\\x-5< 0\end{matrix}\right.\\\left\{\begin{matrix}x+3< 0\\x-5>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[\begin{matrix}-3< x< 5\\\left\{\begin{matrix}x< -3\\x>5\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow-3< x< 5\)
Để B > 0 thì \(\left[\begin{matrix}\left\{\begin{matrix}x>0\\x-3>0\end{matrix}\right.\\\left\{\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[\begin{matrix}x>3\\x< 0\end{matrix}\right.\)
2/ Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\left\{\begin{matrix}x=6\\y=9\\z=12\end{matrix}\right.\)
1.Cho A={-1;0;1}và B={-2;3}
Gọi M ={x∈M|x=a.b;a∈A;b∈B}.Chọn câu đúng
A.M={2;0;3}
B.M={1;0;-2}
C.M={2;0;-2;-3}
D.M={-1;0;-2}
2.Bỏ dấu ngoặc của các biểu thức sau đây thì kết quả đúng là
A.(x-y)+z=x+y-z
B.x-(y+z)=x-y-z
C.x-(y-z)=x-y-z
D.x+(y-z)=x+y+z
3.Biết a∈Z.Chọn câu sai
A.|a|≥0 với mọi a
B.|a|=0 khi a=0
C.|a|>0 khi a>0 hoặc a<0
D.|a|<0 khi a<0
Câu 1:
Trong 4 đáp án, đáp án C là đúng nhất nhung nếu đủ thì phải là:
M={2; -3; 0; -2; 3}