Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 . A = 2 + 2^2 +....+2^2009
A = 2A -A = 2^2009-1
A<B
B- A = 1
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
Ta có:
A = 1 + 2 + 22 + ... + 22008
=> 2A = 2 + 22 + ... + 22009
=> 2A - A = 22009 - 1
=> A = 22009 - 1
Ta có : A = 22009 - 1; B = 22009
=> A - B = 22009 - 1 - 22009 = -1
\(A=1+2+2^2+2^3+.....+2^{2008}\)
\(\Rightarrow2A=2+2^2+2^3+......+2^{2009}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+......+2^{2009}\right)-\left(1+2+2^2+.....+2^{2008}\right)\)
\(\Rightarrow A=2^{2009}-1\)
\(\Rightarrow A-B=2^{2009}-1-2^{2009}=-1\)
1)Đặt A=1+2+22+23+.....+22008
=>2A=2+22+23+....+22009
=>2A-A=(2+22+23+...+22009)-(1+2+22+23+....+22008)
=-1+22009
ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)
B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)
ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)
vậy A<B
Ta có:
A = 1 + 2 + 22 + ... + 22008
=> 2A = 2 + 22 + ... + 22009
=> 2A - A = 22009 - 1
=> A = 22008 - 1 < 22009 = B
Vậy B> A
2A=2+2^2+...+2^2009
2A-A=(2+2^2+...+2^2009)-(1+2+...+2^2008)
A=2^2009-1
=>A<B
\(2B=\frac{2+2^2+2^3+.....+2^{2010}}{1-2^{2010}}\)
\(B=2B-B=\left(2+2^2+2^3+.....+2^{2010}\right)-\left(2+2^2+2^3+.....+2^{2009}\right)\)
\(B=\frac{2^{2010}-1}{1-2^{2010}}\)
Ra được B rồi thì bạn tự so sánh với \(\frac{-1}{2}nghen\)
Ta có:
\(A=1+2+2^2+2^3+...+2^{2008}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2009}\)
\(\Rightarrow2A-A=2^{2009}-1\Rightarrow A=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-\left(2^{2009}-1\right)=1\)