K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2023

\(A=1+2+2^2+...+2^{2020}+2^{2021}+2^{2023}\)

\(A=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2020}\left(1+2+2^2\right)-2^{2022}+2^{2023}\)

\(A=1+2.7+2^4.7+...+2^{2020}.7-2^{2022}+2^{2023}\)

\(A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\left(1\right)\)

Ta có :

\(2^3=8\equiv1\) (mod 7)

\(\Rightarrow\left(2^3\right)^{674}\equiv1^{674}=1\) (mod 7)

\(\Rightarrow2^{2022}\equiv1\) (mod 7)

\(\Rightarrow2^{2022}+1\equiv1+1=2\)  (mod 7)

\(\Rightarrow2^{2022}+1\equiv2\) (mod 7)

mà \(7\left(2+2^4+...+2^{2020}\right)⋮7\)

\(\left(1\right)\Rightarrow A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\equiv2\) (mod 7)

Vậy số dư của A khi chia cho 7 là 2

15 tháng 11 2021

1)  A=62020+62021+62022+62023

    A= ( 62020+62021) +  ( 62022+62023)

    A= 62020.( 1+6) + 62022.( 1+6)

    A= 62020.7+62022.7

    A= 7.( 62020+62022)

Vì 7 chia hết cho 7 => 7.(62020+62022) chia hết cho 7 hay A chia hết cho 7.

Vậy A chia hết cho 7

    _HT_

15 tháng 11 2021

2)  1+2+3+...+n=1275

Ta thấy dãy số trên là dãy số cách đều nên có khoảng cách là 1 đơn vị 

=> Dãy số trên có n số hạng

Tổng của dãy số trên là :   (n+1).n:2 = 1275

                                          (n+1).n= 1275.2=2550

Mà n và n+1 là 2 số tự nhiên liên tiếp => (n+1).n = 51.50

=> n=50 ( vì n< n+1)

  Vậy n=50

_HT_

15 tháng 11 2021

1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)

\(=7\left(6^{2020}+6^{2022}\right)⋮7\)

AH
Akai Haruma
Giáo viên
16 tháng 11 2021

Bài 1:

$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$

Ta có đpcm.

30 tháng 7 2023

\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\\ \left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\\ \left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\\ 57\left(1+7^3+7^6+...+7^{2018}\right)⋮57\)

30 tháng 7 2023

A=1+7+72+...+72019+72020

=1+(7+72+73)+(74+75+76)+...+(72018+72019+72020)

=1+7(1+7+72)+74(1+7+72)+...+72018(1+7+72)

=1+7x57+74x57+...+72018x57=1+57(7+74+...+72018)

=>A chia cho 57 dư 1.vì 57(7+74+...+72018)⋮57.

ghê câu hỏi số 654321

24 tháng 3 2017

654321

16 tháng 9 2019

ta nhận thấy 2^1+2^2+2^3+2^4 chia hết cho 7.Vậy cứ 4 số liên tiếp cũng chia hết cho 7.

=>Số số hạng của mũ là:

100-1:1=100

mà 100 chia hết cho 4 

=>[2^1+2^2+...2^98+2^99+2^100]:7 có số dư là 0

16 tháng 12 2021
Hello. ..........
9 tháng 1 2021

a, Từ 0 đến 13

b, Từ 0 đến 3

10 tháng 11 2016

Số chia 3 dư 1 chia 4 dư 2 chia 5 dư 3 thì chia 60 dư 1.

Vậy số cần tìm là 61

NM
8 tháng 1 2021

câu 1. \(7^{2n-4}=1\Leftrightarrow2n-4=0\Leftrightarrow n=2\)

câu .2 

a. rõ ràng 2x-2 là số chẵn lớn hơn hoạc bằng -2 đồng thời nó là ước của 24 nên ta có

\(2x-2\in\left\{-2;2;4;6;12;24\right\}\Rightarrow x\in\left\{0,2,3,4,7,13\right\}\)

b. rõ ràng 2x+1 là số chẵn lớn hơn hoạc bằng 1 đồng thời nó là ước của 7 nên ta có

\(2x+1\in\left\{1,7\right\}\Rightarrow x\in\left\{0,3\right\}\)

c. ta có \(a+b=a-3+b-4+7\)

ta có a-3 và b-4 chia hết cho 5  còn 7 chia 5 dư 2

vậy a+b chia 5 dư 2..

7 tháng 1 2018

a, B = (1+2)+(2^2+2^3+2^4)+(2^5+2^6+2^7)+.....+(2^2003+2^2004+2^2005)

      = 3+2^2.(1+2+2^2)+2^5.(1+2+2^2)+.....+2^2003.(1+2+2^2)

      = 3+2^2.7+2^5.7+.....+2^2003.7

      = 3+7.(2^2+2^5+.....+2^2003) chia 7 dư 3

b, 2B = 2+2^2+....+2^2006

B=2B-B=(2+2^2+....+2^2006)-(1+2+2^2+.....+2^2005) = 2^2006-1

Xét : 2^2006 = 2^2.2^2004 = 4.(2^4)^501 = 4.(16)^501 = 4 .  ....6 = ....4 có tận cùng là 4

=> B có tận cùng là 4-1=3

Tk mk nha