K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

khó quá

30 tháng 12 2018

mình mới họclớp 5 à khó quá

31 tháng 12 2015

Câu1 :K=2

Câu 2:a=-5;-1;1;5

Câu 3:x=5

Câu4:x=3

Câu 5:-1

31 tháng 12 2015

CHTT nha

9 tháng 10 2019

x:y:z=a:b:c => x=ak ; y=bk ; z=ck (k thuộc R)

Vì a+b+c=a^2+b^2+c^2=1 => (a+b+c)^2=a^2+b^2+c^2=1

=> k^2 . (a+b+c)^2= k ^2 . (a^2+b^2+c^2)

=> (ak+bk+ck)^2 =(ak)^2+(bk)^2+(ck)^2 

=> (x+y+z)^2=x^2+y^2+z^2

9 tháng 10 2019

Dùng tính chất dãy tỉ số bằng nhau 

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)\(\Rightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\Rightarrow DPCM\)

17 tháng 11 2018

Do x, y, z,t là 4 số tự nhiên khác nhau nên có \(x+y+z+t\ge4\)

Giả sử \(x+y+z+t\) là số nguyên tố mà \(x+y+z+t\ge4\) nên \(x+y+z+t\)lẻ.

Vì \(x+y+z+t\) lẻ nên số lượng số lẻ có thể là 1 và 3.

Với 1 số lẻ ,giả sử \(x\)là số lẻ ta có: \(x^2+y^2\ne z^2+t^2\)(Do \(x^2+y^2\)lẻ mà \(z^2+t^2\)chẵn).

Với 3 số lẻ, giả sử \(x,y,z\)là 3 số lẻ, ta có \(x^2+y^2\ne z^2+t^2\)( Do \(x^2+y^2\)chẵn mà \(z^2+t^2\)lẻ)

Do đó với mọi \(x,y,z,t\) tự nhiên khác nhau thì \(x+y+z+t\)không thể là số nguyên tố. Vậy \(x+y+z+t\)là hợp số.

Chúc em học tốt!

7 tháng 11 2018

Mình cần gấp ai đó giúp mình đi

7 tháng 11 2018

Do \(a^x=bc;b^y=ca;c^z=ab\Rightarrow a^x.b^y.c^z=bc.ca.ab=a^2.b^2.c^2\)\(\Leftrightarrow\frac{a^2.b^2.c^2}{a^x.b^y.c^z}=1\Rightarrow\frac{a^2}{a^x}.\frac{b^2}{b^y}.\frac{c^2}{c^z}=1\)

Do a;b;c;x;y;z>0;a;b;c>1\(\Rightarrow\hept{\begin{cases}\frac{a^2}{a^x}=1\\\frac{b^2}{b^y}=1\\\frac{c^2}{c^z}=1\end{cases}}\Rightarrow\hept{\begin{cases}a^2=a^x\\b^2=b^y\\c^2=c^z\end{cases}}\Rightarrow x=y=z=2\)

\(\Rightarrow\hept{\begin{cases}x+y+z+2=2+2+2+2=4\\x.y.z=2.2.2=4\end{cases}}\Rightarrow x+y+z+2=xyz\)