K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
18 tháng 3 2017
Sửa đề:
Chứng minh: \(\left(a_1-b_1\right)\left(a_2-b_2\right)\left(a_3-b_3\right)...\left(a_5-b_5\right)⋮2\)
Giải:
Đặt \(c_1=a_1-b_1;c_2=a_2-b_2;...;c_5=a_5-b_5\)
Xét tổng \(c_1+c_2+c_3+...+c_5\) ta có:
\(c_1+c_2+c_3+...+c_5\)
\(=\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_5-b_5\right)\)
\(=0\)
\(\Rightarrow c_1;c_2;c_3;c_4;c_5\) phải có một số chẵn
\(\Rightarrow c_1.c_2.c_3.c_4.c_5⋮2\)
Vậy \(\left(a_1-b_1\right)\left(a_2-b_2\right)\left(a_3-b_3\right)...\left(a_5-b_5\right)⋮2\) (Đpcm)
3 tháng 12 2015
Bạn vào đây tìm đi Giáo án Toán 7 - Tuần 1 đến tuần 7 - Giáo Án, Bài Giảng
19 tháng 10 2019
Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath