K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 10 2023

Bạn xem lại phương trình ban đầu có đúng không vậy?

16 tháng 10 2023

Đè bài nó như thế ák

12 tháng 12 2018

Ta có : \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

    \(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

   \(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Do \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{cases}\Rightarrow VT\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=y+z\\y=3\\z=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}}\)

Khi đó \(P=\left(4-4\right)^{2018}+\left(3-4\right)^{2018}+\left(5-4\right)^{2018}\)

               \(=0+\left(-1\right)^{2018}+1^{2018}\)

               \(=2\)

6 tháng 3 2016

to moi hoc lop 5 thoi 

6 tháng 3 2016

Ta có:

\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z=-34\)

\(\Leftrightarrow\)  \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

\(\Leftrightarrow\)  \(4x^2-\left(4xy+4xz\right)+\left(y^2+2yz+z^2\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Leftrightarrow\)  \(4x^2-4x\left(y+z\right)+\left(y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

\(\Leftrightarrow\)  \(\left[2x-\left(y+z\right)\right]^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Mặt khác, ta lại có:  \(\left[2x-\left(y+z\right)\right]^2\ge0;\)  \(\left(y-3\right)^2\ge0\)  và  \(\left(z-5\right)^2\ge0\)  với mọi  \(x;\)  \(y;\)  \(z\)

nên  \(\left[2x-\left(y+z\right)\right]^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)

Do đó,  dấu  \(''=''\)  xảy ra  \(\Leftrightarrow\)   \(\left[2x-\left(y+z\right)\right]^2=0;\)  \(\left(y-3\right)^2=0\)  và  \(\left(z-5\right)^2=0\)

                                           \(\Leftrightarrow\)   \(2x-\left(y+z\right)=0;\)  \(y-3=0\)  và  \(z-5=0\)

                                           \(\Leftrightarrow\)   \(x=\frac{y+z}{2};\)  \(y=3\)  và  \(z=5\)

Khi đó,  \(x=\frac{3+5}{2}=\frac{8}{2}=4\)

Thay các giá trị trên của các biến  \(x;\)  \(y;\)  \(z\)  lần lượt vào  biểu thức  \(Q\), ta được:

\(Q=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}=2\)

AH
Akai Haruma
Giáo viên
27 tháng 6 2019

Lời giải:
Ta có:

\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

\(\Leftrightarrow (4x^2-4xy+y^2)+2z^2+y^2-2z(2x-y)-6y-10z+34=0\)

\(\Leftrightarrow (2x-y)^2-2z(2x-y)+z^2+(y^2-6y+9)+(z^2-10z+25)=0\)

\(\Leftrightarrow (2x-y-z)^2+(y-3)^2+(z-5)^2=0\)

\((2x-y-z)^2; (y-3)^2; (z-5)^2\geq 0, \forall x,y,z\). Do đó để \((2x-y-z)^2+(y-3)^2+(z-5)^2=0\) thì:
\((2x-y-z)^2=(y-3)^2=(z-5)^2=0\)

\(\Rightarrow \left\{\begin{matrix} x=4\\ y=3\\ z=5\end{matrix}\right.\)

Khi đó:

\(S=(4-4)^{2018}+(3-4)^{2019}+(5-4)^{2020}=0+(-1)+1=0\)

8 tháng 7 2017

Từ \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

\(\Leftrightarrow\left(4x^2-4xy-4xz+y^2+2yz+z^2\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Dễ thấy: \(\left\{{}\begin{matrix}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)

Xảy ra khi \(\left\{{}\begin{matrix}\left(2x-y-z\right)=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=5\end{matrix}\right.\)

Khi đó \(A=\left(4-4\right)^{2015}+\left(3-4\right)^{2015}+\left(5-4\right)^{2015}=0+1-1=0\)

26 tháng 12 2020

cho mik hỏi cách tính 2x-y-z là j