K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 8 2024

Lời giải:

$a_2^2=a_1a_3\Rightarrow \frac{a_2}{a_3}=\frac{a_1}{a_2}$

$a_3^2=a_2a_4\Rightarrow \frac{a_2}{a_3}=\frac{a_3}{a_4}$

$\Rightarrow \frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}$

Đặt $\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=k$

$\Rightarrow a_1=ka_2; a_2=ka_3; a_3=ka_4$

Khi đó:

$\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{(ka_2)^3+(ka_3)^3+(ka_4)^3}{a_2^3+a_3^3+a_4^3}$

$=\frac{k^3(a_2^3+a_3^3+a_4^3}{a_2^3+a_3^3+a_4^3}$

$=k^3(1)$

Và:

$\frac{a_1}{a_4}=\frac{ka_2}{a_4}=\frac{k.ka_3}{a_4}=\frac{k.k.ka_4}{a_4}=k^3(2)$
Từ $(1); (2)\Rightarrow$ đpcm.

24 tháng 3 2017

Giải:

Ta có: \(a_2^2=a_1a_3\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\)

\(a_3^2=a_2a_4\Rightarrow\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)

\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)

\(\Rightarrow\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a_3^3}{a_4^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a_3^3}{a_4^3}=\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)

\(\dfrac{a_1^3}{a_2^3}=\left(\dfrac{a_1}{a_2}\right)^3=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\)

\(\Rightarrow\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\dfrac{a_1}{a_4}\left(đpcm\right)\)

Vậy...

24 tháng 3 2017

Theo bài ra:

\(a_1,a_2,a_3,a_4\ne0\) thỏa mãn \(\left\{{}\begin{matrix}a_2^2=a_1a_3\\a_3^2=a_2a_4\end{matrix}\right.\)

Ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)

\(\Rightarrow\dfrac{a^3_1}{a^3_2}=\dfrac{a_2^3}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a^3_1}{a^3_2}=\dfrac{a_2^3}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a^3_1+a_2^3+a_3^3}{a_2^3+a_3^3+a^3_4}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra:

\(\dfrac{a^3_1+a_2^3+a_3^3}{a_2^3+a_3^3+a^3_4}=\dfrac{a_1}{a_4}\) (Đpcm)

27 tháng 12 2016

Ta có

\(\hept{\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a_1}{a_2}=\frac{a_2}{a_3}\\\frac{a_2}{a_3}=\frac{a_3}{a_4}\end{cases}}}\)

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(1\right)\)

Ta lại có

\(\frac{a_2^2}{a_3^2}=\frac{a_1.a_3}{a_2.a_4}\)

\(\frac{a_2^3}{a_3^3}=\frac{a_1}{a_4}\left(2\right)\)

Từ (1) và (2)

\(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)

27 tháng 12 2016

http://h.vn/hoi-dap/question/157445.html

7 tháng 9 2015

(a2)2 = a1.a3 => \(\frac{a_1}{a_2}=\frac{a_2}{a_3}\); a23 = a2.a4 => \(\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

=> \(\frac{\left(a_1\right)^3}{\left(a_2\right)^3}=\frac{\left(a_2\right)^3}{\left(a_3\right)^3}=\frac{\left(a_3\right)^3}{\left(a_4\right)^3}=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{\left(a_1\right)^3+\left(a_2\right)^3+\left(a_3\right)^3}{\left(a_2\right)^3+\left(a_3\right)^3+\left(a_4\right)^3}=\frac{\left(a_1\right)^3}{\left(a_2\right)^3}=\frac{a_1}{a_4}\)

=> đpcm

7 tháng 9 2015

khó quá mới nhìn đã k mún làm òi.xin lỗi bn nha.

7 tháng 11 2016
  • Xét 4 số: a1; a2; a3; a4; 4 số này khi chia cho 3 chỉ có thể dư 0; 1; 2. Có 4 số mà chỉ có 3 loại số dư nên theo nguyên lí Đi rich let có ít nhất 2 số cùng dư khi chia cho 3, hiệu của chúng chia hết cho 3
  • Tương tự xét 4 số a2; a3; a4; a5 và => 4 số này tạo ra ít nhất 1 hiệu chia hết cho 3

Từ 2 điều trên => D chia hết cho 9 (1)

Có 5 số nguyên mà chỉ có 2 loại số lẻ và chẵn nên theo nguyên lí Đi rich let có ít nhất 3 số cùng lẻ (chẵn)

  • Nếu cả 5 số đó cùng chẵn hoặc cùng lẻ ta dễ dàng => D chia hết cho 32
  • + Nếu trong 5 số, có 1 số lẻ, 4 số chẵn, không mất tính tổng quát ta giả sử 4 số đó là a1; a2; a3; a4, dễ dàng => D chia hết cho 32

+ Nếu trong 5 số, có 1 số chẵn, 4 số lẻ tương tự như trên cũng => D chia hết cho 32

  • + Nếu trong 5 số, có 3 số chẵn, 2 số lẻ ; 3 số chẵn này khi chia cho 4 chỉ có thể dư 0 hoặc 2. Có 3 số mà chỉ có 2 loại số dư nên theo nguyên lí Đi rich let có ít nhất 2 số cùng dư khi chia cho 4, hiệu của chúng chia hết cho 4 cộng với 3 hiệu còn lại chia hết cho 2 tạo bởi 3 số chẵn (trừ trường hợp trên) và 2 số lẻ cũng => D chia hết cho 32

+ Xét tương tự với trường hợp trong 5 số có 3 số lẻ, 2 số chẵn

Vậy trong các trường hợp ta luôn được D chia hết cho 32 (2)

Từ (1) và (2), do (9;32)=1 => D chia hết cho 288 (đpcm)