Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a_2^2=a_1a_3\Rightarrow \frac{a_2}{a_3}=\frac{a_1}{a_2}$
$a_3^2=a_2a_4\Rightarrow \frac{a_2}{a_3}=\frac{a_3}{a_4}$
$\Rightarrow \frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}$
Đặt $\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=k$
$\Rightarrow a_1=ka_2; a_2=ka_3; a_3=ka_4$
Khi đó:
$\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{(ka_2)^3+(ka_3)^3+(ka_4)^3}{a_2^3+a_3^3+a_4^3}$
$=\frac{k^3(a_2^3+a_3^3+a_4^3}{a_2^3+a_3^3+a_4^3}$
$=k^3(1)$
Và:
$\frac{a_1}{a_4}=\frac{ka_2}{a_4}=\frac{k.ka_3}{a_4}=\frac{k.k.ka_4}{a_4}=k^3(2)$
Từ $(1); (2)\Rightarrow$ đpcm.
Ta có
\(\hept{\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a_1}{a_2}=\frac{a_2}{a_3}\\\frac{a_2}{a_3}=\frac{a_3}{a_4}\end{cases}}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(1\right)\)
Ta lại có
\(\frac{a_2^2}{a_3^2}=\frac{a_1.a_3}{a_2.a_4}\)
\(\frac{a_2^3}{a_3^3}=\frac{a_1}{a_4}\left(2\right)\)
Từ (1) và (2)
\(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
(a2)2 = a1.a3 => \(\frac{a_1}{a_2}=\frac{a_2}{a_3}\); a23 = a2.a4 => \(\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
=> \(\frac{\left(a_1\right)^3}{\left(a_2\right)^3}=\frac{\left(a_2\right)^3}{\left(a_3\right)^3}=\frac{\left(a_3\right)^3}{\left(a_4\right)^3}=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{\left(a_1\right)^3+\left(a_2\right)^3+\left(a_3\right)^3}{\left(a_2\right)^3+\left(a_3\right)^3+\left(a_4\right)^3}=\frac{\left(a_1\right)^3}{\left(a_2\right)^3}=\frac{a_1}{a_4}\)
=> đpcm
\(\left\{{}\begin{matrix}a^2_2=a_1a_3\\a^2_3=a_2a_4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\\\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\dfrac{a_1a_2a_3}{a_2a_3a_4}=\dfrac{a_1}{a_4}\)
Ta có:
\(\left\{{}\begin{matrix}\dfrac{a_1}{a_2}=\dfrac{a_1^3}{a_2^3}\\\dfrac{a_2}{a_3}=\dfrac{a_2^3}{a_3^3}\\\dfrac{a_3}{a_4}=\dfrac{a_3^3}{a_4^3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a^3_3}{a_4^3}=\dfrac{a^3_1+a_2^3+a_3^3}{a^3_2+a^3_3+a^3_4}\)
Vậy \(\dfrac{a^3_1+a^3_2+a^3_3}{a^3_2+a^3_3+a^3_4}=\dfrac{a_1}{a_4}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_8}{a_9}=\dfrac{a_9}{a_1}=\dfrac{a_1+a_2+...+a_8+a_9}{a_2+a_3+...+a_9+a_1}=1\)
\(\Rightarrow\dfrac{a_1}{a_2}=1\Rightarrow a_1=a_2\)
...
\(\dfrac{a_9}{a_1}=1\Rightarrow a_9=a_1\)
\(\Rightarrow a_1=a_2=...=a_9\left(đpcm\right)\)
Vậy...
Ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4};...;\frac{a_{2015}}{a_{2016}}=\frac{a_{2016}}{a_{2017}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2016}}{a_{2017}}=k\)
\(\Rightarrow\frac{a_1^{2016}}{a_2^{2016}}=\frac{a_2^{2016}}{a_3^{2016}}=...=\frac{a_{2016}^{2016}}{a_{2017}^{2016}}=\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=k^{2016}\left(1\right)\)
Ta lại có:
\(k^{2016}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2016}}{a_{2017}}=\frac{a_1}{a_{2017}}\left(2\right)\)
Từ (1) và (2) \(\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=\frac{a_1}{a_{2017}}\)
Giải:
Ta có: \(a_2^2=a_1a_3\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\)
\(a_3^2=a_2a_4\Rightarrow\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
\(\Rightarrow\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a_3^3}{a_4^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a_3^3}{a_4^3}=\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)
\(\dfrac{a_1^3}{a_2^3}=\left(\dfrac{a_1}{a_2}\right)^3=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\)
\(\Rightarrow\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\dfrac{a_1}{a_4}\left(đpcm\right)\)
Vậy...
Theo bài ra:
\(a_1,a_2,a_3,a_4\ne0\) thỏa mãn \(\left\{{}\begin{matrix}a_2^2=a_1a_3\\a_3^2=a_2a_4\end{matrix}\right.\)
Ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
\(\Rightarrow\dfrac{a^3_1}{a^3_2}=\dfrac{a_2^3}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a^3_1}{a^3_2}=\dfrac{a_2^3}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a^3_1+a_2^3+a_3^3}{a_2^3+a_3^3+a^3_4}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(\dfrac{a^3_1+a_2^3+a_3^3}{a_2^3+a_3^3+a^3_4}=\dfrac{a_1}{a_4}\) (Đpcm)