K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 8

Lời giải:

$a_2^2=a_1a_3\Rightarrow \frac{a_2}{a_3}=\frac{a_1}{a_2}$

$a_3^2=a_2a_4\Rightarrow \frac{a_2}{a_3}=\frac{a_3}{a_4}$

$\Rightarrow \frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}$

Đặt $\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=k$

$\Rightarrow a_1=ka_2; a_2=ka_3; a_3=ka_4$

Khi đó:

$\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{(ka_2)^3+(ka_3)^3+(ka_4)^3}{a_2^3+a_3^3+a_4^3}$

$=\frac{k^3(a_2^3+a_3^3+a_4^3}{a_2^3+a_3^3+a_4^3}$

$=k^3(1)$

Và:

$\frac{a_1}{a_4}=\frac{ka_2}{a_4}=\frac{k.ka_3}{a_4}=\frac{k.k.ka_4}{a_4}=k^3(2)$
Từ $(1); (2)\Rightarrow$ đpcm.

17 tháng 10 2015

a22=a1 . a2  ;    a32=a. a4

=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)\(\frac{a_1+a_2+a_3}{a_2+a_3+a_4}\)

=> \(\frac{a1^3+a2^3+a3^3}{a2^3+a3^3+a4^3}=\frac{a1.a2.a3}{a2.a3.a4}=\frac{a1}{a4}\)

a2^2=a1*a3

=>a1/a2=a2/a3

 

a3^2=a2*a4

=>a2/a3=a3/a4

=>a1/a2=a2/a3=a3/a4=k

=>a1=a2k; a2=a3*k; a3=a4*k

=>a1=a2*k; a2=a4*k^2; a3=k*a4

=>a1=a4*k^3; a2=a4*k^2; a3=k*a4

\(\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\dfrac{a_4^3\cdot k^9+a_4^3\cdot k^6+a_4^3\cdot k^3}{a_4^3\cdot k^6+a_4^3\cdot k^3+a_4^3}\)

\(=\dfrac{k^3\left(a_4^3\cdot k^6+a_4^3\cdot k^3+a_3^4\right)}{a_4^3\cdot k^6+a_4^3\cdot k^3}=k^3\)

\(\dfrac{a1}{a4}=\dfrac{a_4\cdot k^3}{a_4}=k^3\)

=>\(\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\dfrac{a_1}{a_4}\)

3 tháng 12 2019

1 tháng 6 2015

Ta có: a22=a1a3 và a32=a2a4

=>\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

=>\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)

Lại có:\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)

=>\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)

Vậy:\(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)

1 tháng 6 2015

Rất mún nhưng mk mệt lắm.Đánh máy một nửa rồi xong lại mỏi thế thôi

20 tháng 9 2019

Bạn tham khảo tại đây nhé: Câu hỏi của Vương Hàn.

Chúc bạn học tốt!

20 tháng 9 2019

Vũ Minh TuấnBăng Băng 2k6Lê Thị Thục Hiền@Nk>↑@Trần Thanh PhươngMo Nguyễn VăntthNguyễn Thị Diễm Quỳnhlê thị hương giang

26 tháng 12 2016

Theo đề bài \(a_2^2=a_1a_3\)\(a_3^2=a_2a_4\) do đó \(\frac{a_1}{a_2}=\frac{a_2}{a_3}\)\(\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

hay \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\), suy ra \(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}\cdot\frac{a_2}{a_3}\cdot\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)\)

Mặt khác \(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)\)

Từ (1) và (2) ta có điều phải chứng minh

14 tháng 3 2018

a) \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\cdot\cdot\left(\frac{1}{2012^2}-1\right)\)(có 1006 số hạng nên tích của A là số dương)

\(\Rightarrow A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{2012^2}\right)\)

\(\Rightarrow A=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\cdot\cdot\cdot\left(\frac{2012^2-1}{2012^2}\right)\)

\(\Rightarrow A=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\cdot\cdot\frac{2011\cdot2013}{2012^2}\)

\(\Rightarrow A=\text{​​}\frac{2013}{2\cdot2012}=\frac{2013}{4024}\)